摘要:
Local models learned from anomaly detection are used to rank detected anomalies. The local models include image feature values extracted from an image field of video image data with respect to different predefined spatial and temporal local units, wherein anomaly results are determined by failures to fit to applied anomaly detection module local models. Image features values extracted from the image field local units associated with anomaly results are normalized, and image feature values extracted from the image field local units are clustered. Weights for anomaly results are learned as a function of the relations of the normalized extracted image feature values to the clustered image feature values. The normalized values are multiplied by the learned weights to generate ranking values to rank the anomalies.
摘要:
Methods and apparatus are provided for color correction of images. One or more colors in an image obtained from a static video camera are corrected by obtaining one or more historical background models from one or more prior images obtained from the static video camera; obtaining a live background model and a live foreground model from one or more current images obtained from the static video camera; generating a reference image from the one or more historical background models; and processing the reference image, the live background model, and the live foreground model to generate a set of color corrected foreground objects in the image. The set of color corrected foreground objects is optionally processed to classify a color of at least one of the foreground objects.
摘要:
Human behavior is determined by sequential event detection by constructing a temporal-event graph with vertices representing adjacent first and second primitive images of a plurality of individual primitive images parsed from a video stream, and also of first and second idle states associated with the respective first and second primitive images. Constructing the graph is a function of an edge set between the adjacent first and second primitive images, and an edge weight set as a function of a discrepancy between computed visual features within regions of interest common to the adjacent first and second primitive images. A human activity event is determined as a function of a shortest distance path of the temporal-event graph vertices.
摘要:
Video image data is acquired from synchronized cameras having overlapping views of objects moving past the cameras through a scene image in a linear array and with a determined speed. Processing units generate one or more object detections associated with confidence scores within frames of the camera video stream data. The confidence scores are modified as a function of constraint contexts including a cross-frame constraint that is defined by other confidence scores of other object detection decisions from the video data that are acquired by the same camera at different times; a cross-view constraint defined by other confidence scores of other object detections in the video data from another camera with an overlapping field-of-view; and a cross-object constraint defined by a sequential context of a linear array of the objects, spatial attributes of the objects and the determined speed of the movement of the objects relative to the cameras.
摘要:
Automatic object retrieval from input video is based on learned, complementary detectors created for each of a plurality of different motionlet clusters. The motionlet clusters are partitioned from a dataset of training vehicle images as a function of determining that vehicles within each of the scenes of the images in each cluster share similar two-dimensional motion direction attributes within their scenes. To train the complementary detectors, a first detector is trained on motion blobs of vehicle objects detected and collected within each of the training dataset vehicle images within the motionlet cluster via a background modeling process; a second detector is trained on each of the training dataset vehicle images within the motionlet cluster that have motion blobs of the vehicle objects but are misclassified by the first detector; and the training repeats until all of the training dataset vehicle images have been eliminated as false positives or correctly classified.
摘要:
Methods and apparatus are provided for color correction of images. One or more colors in an image obtained from a static video camera are corrected by obtaining one or more historical background models from one or more prior images obtained from the static video camera; obtaining a live background model and a live foreground model from one or more current images obtained from the static video camera; generating a reference image from the one or more historical background models; and processing the reference image, the live background model, and the live foreground model to generate a set of color corrected foreground objects in the image. The set of color corrected foreground objects is optionally processed to classify a color of at least one of the foreground objects.
摘要:
Methods and systems are provided for object detection. A method includes automatically collecting a set of training data images from a plurality of images. The method further includes generating occluded images. The method also includes storing in a memory the generated occluded images as part of the set of training data images, and training an object detector using the set of training data images stored in the memory. The method additionally includes detecting an object using the object detector, the object detector detecting the object based on the set of training data images stored in the memory.
摘要:
An approach that automatically distinguishes between in-store customers and in-store employees is provided. In one embodiment, there is a learning tool configured to construct a model for an in-store employee; a matching tool configured to match attributes between a particular person and the constructed models for an in-store employee; and a classifying tool configured to classify persons into categories of employees and customers based on amount of matching attributes between a particular person and the model for an in-store employee.
摘要:
Automatic object retrieval from input video is based on learned, complementary detectors created for each of a plurality of different motionlet clusters. The motionlet clusters are partitioned from a dataset of training vehicle images as a function of determining that vehicles within each of the scenes of the images in each cluster share similar two-dimensional motion direction attributes within their scenes. To train the complementary detectors, a first detector is trained on motion blobs of vehicle objects detected and collected within each of the training dataset vehicle images within the motionlet cluster via a background modeling process; a second detector is trained on each of the training dataset vehicle images within the motionlet cluster that have motion blobs of the vehicle objects but are misclassified by the first detector; and the training repeats until all of the training dataset vehicle images have been eliminated as false positives or correctly classified.
摘要:
In an embodiment, automated analysis of video data for determination of human behavior includes providing a programmable device that segments a video stream into a plurality of discrete individual frame image primitives which are combined into a visual event that may encompass an activity of concern as a function of a hypothesis. The visual event is optimized by setting a binary variable to true or false as a function of one or more constraints. The optimized visual event is processed in view of associated non-video transaction data and the binary variable by associating the optimized visual event with a logged transaction if associable, issuing an alert if the binary variable is true and the optimized visual event is not associable with the logged transaction, and dropping the optimized visual event if the binary variable is false and the optimized visual event is not associable.