-
1.
公开(公告)号:US09260122B2
公开(公告)日:2016-02-16
申请号:US13489489
申请日:2012-06-06
CPC分类号: B61L23/042
摘要: Video image data is acquired from synchronized cameras having overlapping views of objects moving past the cameras through a scene image in a linear array and with a determined speed. Processing units generate one or more object detections associated with confidence scores within frames of the camera video stream data. The confidence scores are modified as a function of constraint contexts including a cross-frame constraint that is defined by other confidence scores of other object detection decisions from the video data that are acquired by the same camera at different times; a cross-view constraint defined by other confidence scores of other object detections in the video data from another camera with an overlapping field-of-view; and a cross-object constraint defined by a sequential context of a linear array of the objects, spatial attributes of the objects and the determined speed of the movement of the objects relative to the cameras.
摘要翻译: 视频图像数据从同步摄像机获取,该相机具有通过线性阵列中的场景图像以确定的速度移动通过相机的对象的重叠视图。 处理单元产生与相机视频流数据的帧内的置信度分数相关联的一个或多个对象检测。 可信度分数被修改为约束上下文的函数,包括由不同时间由同一相机获取的视频数据的其他对象检测决定的其他置信度分数定义的跨帧约束; 由具有重叠视场的另一相机的视频数据中的其他对象检测的其他置信度得分定义的横视约束; 以及由对象的线性阵列,对象的空间属性和所确定的对象相对于照相机的移动速度的顺序上下文定义的跨对象约束。
-
2.
公开(公告)号:US20130329049A1
公开(公告)日:2013-12-12
申请号:US13489489
申请日:2012-06-06
IPC分类号: H04N7/18
CPC分类号: B61L23/042
摘要: Video image data is acquired from synchronized cameras having overlapping views of objects moving past the cameras through a scene image in a linear array and with a determined speed. Processing units generate one or more object detections associated with confidence scores within frames of the camera video stream data. The confidence scores are modified as a function of constraint contexts including a cross-frame constraint that is defined by other confidence scores of other object detection decisions from the video data that are acquired by the same camera at different times; a cross-view constraint defined by other confidence scores of other object detections in the video data from another camera with an overlapping field-of-view; and a cross-object constraint defined by a sequential context of a linear array of the objects, spatial attributes of the objects and the determined speed of the movement of the objects relative to the cameras.
摘要翻译: 视频图像数据从同步摄像机获取,该相机具有通过线性阵列中的场景图像以确定的速度移动通过相机的对象的重叠视图。 处理单元产生与相机视频流数据的帧内的置信度分数相关联的一个或多个对象检测。 可信度分数被修改为约束上下文的函数,包括由不同时间由同一相机获取的视频数据的其他对象检测决定的其他置信度分数定义的跨帧约束; 由具有重叠视场的另一相机的视频数据中的其他对象检测的其他置信度得分定义的横视约束; 以及由对象的线性阵列,对象的空间属性和所确定的对象相对于照相机的移动速度的顺序上下文定义的跨对象约束。
-
公开(公告)号:US09036865B2
公开(公告)日:2015-05-19
申请号:US13612345
申请日:2012-09-12
申请人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti , Yuichi Fujiji , Hoang Trinh
发明人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti , Yuichi Fujiji , Hoang Trinh
CPC分类号: G06T7/0044 , G06T7/74 , G06T2207/10016 , G06T2207/30108 , G06T2207/30252
摘要: A global position of an observed object is determined by obtaining a first global position of an observed object with at least one positioning device. A determination is made as to whether a set of stored visual characteristic information of at least one landmark matches a visual characteristic information set obtained from at least one captured image comprising a scene associated with the observed object. In response to the set of stored visual characteristic information matching the obtained visual characteristic information set, a second global position of the observed object is determined based on a set of stored location information associated with the at least one landmark and the first global position.
摘要翻译: 通过利用至少一个定位装置获得观察对象的第一全局位置来确定观察对象的全局位置。 确定至少一个地标的一组存储的视觉特征信息是否与从包括与观察对象相关联的场景的至少一个拍摄图像获得的视觉特征信息集匹配。 响应于与所获得的视觉特征信息集匹配的所存储的视觉特征信息的集合,基于与至少一个地标和第一全局位置相关联的一组存储的位置信息来确定观察对象的第二全局位置。
-
公开(公告)号:US09050984B2
公开(公告)日:2015-06-09
申请号:US13451610
申请日:2012-04-20
CPC分类号: B61L23/042 , G06T7/0004 , G06T7/194 , G06T2207/30136 , G06T2207/30164 , G06T2207/30242 , G06T2207/30252
摘要: A method and system for inspecting railway components. The method includes receiving a stream of images containing railway components, detecting a railway component in each image, generating a plurality of feature vectors for each railway component image, measuring the dissimilarity between the railway component and a set of railway components detected in preceding images, in a sliding window, based on the feature vectors.
摘要翻译: 检查铁路部件的方法和系统。 该方法包括接收包含铁路部件的图像流,检测每个图像中的铁路部件,为每个铁路部件图像生成多个特征向量,测量铁路部件与在先前图像中检测到的一组铁路部件之间的不相似性, 在滑动窗口中,基于特征向量。
-
公开(公告)号:US20130279743A1
公开(公告)日:2013-10-24
申请号:US13451610
申请日:2012-04-20
CPC分类号: B61L23/042 , G06T7/0004 , G06T7/194 , G06T2207/30136 , G06T2207/30164 , G06T2207/30242 , G06T2207/30252
摘要: A method and system for inspecting railway components. The method includes receiving a stream of images containing railway components, detecting a railway component in each image, generating a plurality of feature vectors for each railway component image, measuring the dissimilarity between the railway component and a set of railway components detected in preceding images, in a sliding window, based on the feature vectors.
摘要翻译: 检查铁路部件的方法和系统。 该方法包括接收包含铁路部件的图像流,检测每个图像中的铁路部件,为每个铁路部件图像生成多个特征向量,测量铁路部件与在先前图像中检测到的一组铁路部件之间的不相似性, 在滑动窗口中,基于特征向量。
-
公开(公告)号:US20130101221A1
公开(公告)日:2013-04-25
申请号:US13280896
申请日:2011-10-25
申请人: Yuichi Fujiki , Norman Haas , Ying Li , Charles A. Otto , Balamanohar Paluri , Sharathchandra Pankanti
发明人: Yuichi Fujiki , Norman Haas , Ying Li , Charles A. Otto , Balamanohar Paluri , Sharathchandra Pankanti
CPC分类号: G06K9/6284 , B61L23/044 , B61L23/047 , B61L23/048 , G06K9/6218
摘要: A system, method, and computer program product for detecting anomalies in an image. In an example embodiment the method includes partitioning each image of a set of images into a plurality of image local units. The method further includes clustering all local units in the image set into clusters, and consequently assigning a class label to each local unit based on the clustering results. The local units with identical class labels having at least one substantially related image feature. Further, the method includes assigning a weight to each of the local units based on a variation of the class labels across all images in a set of images. The method further includes performing a clustering over all images in the set by using a distance metric that takes the learned weight of each local unit into account, then determining the images that belong to minorities of the clusters as anomalies.
摘要翻译: 一种用于检测图像异常的系统,方法和计算机程序产品。 在示例实施例中,该方法包括将一组图像的每个图像划分为多个图像本地单元。 该方法还包括将图像集中的所有局部单元聚类成群集,并且因此基于聚类结果将类标签分配给每个本地单元。 具有相同类别标签的本地单元具有至少一个基本上相关的图像特征。 此外,该方法包括基于一组图像中的所有图像上的类别标签的变化来为每个本地单元分配权重。 该方法还包括通过使用考虑每个本地单元的学习权重的距离度量来执行集合中的所有图像的聚类,然后将属于集群的少数群体的图像确定为异常。
-
7.
公开(公告)号:US09036025B2
公开(公告)日:2015-05-19
申请号:US13348326
申请日:2012-01-11
申请人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti
发明人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti
CPC分类号: H04N7/18 , B61K9/08 , B61L23/044 , B61L23/045 , B61L23/047 , B61L23/048 , B61L27/0088 , G01B11/245 , G06K9/209 , G06K2209/19
摘要: An imaging system includes an image capturing device and a plurality of reflective devices. The image capturing device is configured to receive a plurality of images reflected by the plurality of reflective devices. Responsive to receiving the plurality of images, the image capturing device is further configured to capture within a single frame at least a first image corresponding to a first side of a first railroad track rail, a second image corresponding to a second side of the first railroad track rail, a third image corresponding to a first side of a second railroad track rail, and a fourth image corresponding to a second side of the second railroad track rail.
摘要翻译: 成像系统包括图像捕获装置和多个反射装置。 图像捕获装置被配置为接收由多个反射装置反射的多个图像。 响应于接收多个图像,图像捕获装置还被配置为在单个帧内捕获与第一铁路轨道的第一侧对应的至少第一图像,对应于第一铁路的第二侧的第二图像 轨道轨道,对应于第二轨道轨道的第一侧的第三图像,以及对应于第二轨道轨道的第二侧的第四图像。
-
8.
公开(公告)号:US20120263342A1
公开(公告)日:2012-10-18
申请号:US13087490
申请日:2011-04-15
申请人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti
发明人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti
IPC分类号: G06K9/00
CPC分类号: G06K9/00 , B61L23/047 , B61L23/048
摘要: A method, system, and computer program product for automatically inspecting railroad tracks. The method includes assessing a configuration of rail components depicted in an image by comparing the configuration of the rail components to known hazards. The method also includes determining a severity of detected problems in the configuration of the rail components, using a computer processor.
摘要翻译: 一种用于自动检查铁轨的方法,系统和计算机程序产品。 该方法包括通过将轨道部件的配置与已知危险进行比较来评估图像中描绘的轨道部件的配置。 该方法还包括使用计算机处理器来确定轨道部件的配置中检测到的问题的严重性。
-
公开(公告)号:US08724904B2
公开(公告)日:2014-05-13
申请号:US13280896
申请日:2011-10-25
申请人: Yuichi Fujiki , Norman Haas , Ying Li , Charles A. Otto , Balamanohar Paluri , Sharathchandra Pankanti
发明人: Yuichi Fujiki , Norman Haas , Ying Li , Charles A. Otto , Balamanohar Paluri , Sharathchandra Pankanti
IPC分类号: G06K9/46
CPC分类号: G06K9/6284 , B61L23/044 , B61L23/047 , B61L23/048 , G06K9/6218
摘要: A system, method, and computer program product for detecting anomalies in an image. In an example embodiment the method includes partitioning each image of a set of images into a plurality of image local units. The method further includes clustering all local units in the image set into clusters, and consequently assigning a class label to each local unit based on the clustering results. The local units with identical class labels having at least one substantially related image feature. Further, the method includes assigning a weight to each of the local units based on a variation of the class labels across all images in a set of images. The method further includes performing a clustering over all images in the set by using a distance metric that takes the learned weight of each local unit into account, then determining the images that belong to minorities of the clusters as anomalies.
摘要翻译: 一种用于检测图像异常的系统,方法和计算机程序产品。 在示例实施例中,该方法包括将一组图像的每个图像划分为多个图像本地单元。 该方法还包括将图像集中的所有局部单元聚类成群集,并且因此基于聚类结果将类标签分配给每个本地单元。 具有相同类别标签的本地单元具有至少一个基本上相关的图像特征。 此外,该方法包括基于一组图像中的所有图像上的类别标签的变化来为每个本地单元分配权重。 该方法还包括通过使用考虑每个本地单元的学习权重的距离度量来执行集合中的所有图像的聚类,然后将属于集群的少数群体的图像确定为异常。
-
10.
公开(公告)号:US08625878B2
公开(公告)日:2014-01-07
申请号:US13087490
申请日:2011-04-15
申请人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti
发明人: Norman Haas , Ying Li , Charles A. Otto , Sharathchandra Pankanti
IPC分类号: G06K9/00
CPC分类号: G06K9/00 , B61L23/047 , B61L23/048
摘要: A method, system, and computer program product for automatically inspecting railroad tracks. The method includes assessing a configuration of rail components depicted in an image by comparing the configuration of the rail components to known hazards. The method also includes determining a severity of detected problems in the configuration of the rail components, using a computer processor.
摘要翻译: 一种用于自动检查铁轨的方法,系统和计算机程序产品。 该方法包括通过将轨道部件的配置与已知危险进行比较来评估图像中描绘的轨道部件的配置。 该方法还包括使用计算机处理器来确定轨道部件的配置中检测到的问题的严重性。
-
-
-
-
-
-
-
-
-