Abstract:
A hemodiafiltration system with a disposable pumping unit is disclosed. An example system includes a medical fluid pump actuator, a medical fluid heater, a blood filter and a disposable unit. The example disposable unit includes a medical fluid cassette portion including a medical fluid cassette housing configured to be operatively connected to the medical fluid pump actuator to pump medical fluid through the medical fluid cassette portion when the medical fluid cassette portion is in fluid communication with a medical fluid source. The example medical fluid cassette portion is also configured to be placed in fluid communication with the blood filter and with an extracorporeal circuit communicating with the blood filter, the fluid communication enabling hemodiafiltration to be performed. The example disposable unit also includes a heater bag configured to be placed in operable communication with the medical fluid heater and in fluid communication with the medical fluid cassette portion.
Abstract:
A handheld personal communication apparatus for dialysis includes: a reader to (i) read a marking displayed on a dialysis fluid container to acquire data concerning at least one of a dialysis fluid type or a dialysis fluid volume from the marking, and/or (ii) receive a patient weight signal from a weight scale; a processor using at least one of the dialysis fluid type, dialysis fluid volume, or patient weight to determine a dialysis dwell time for at least one cycle of a dialysis therapy, the dialysis dwell time being a time to achieve, over the at least one cycle, at least one of (a) a specified ultrafiltrate level, (b) a urea removal level, or (c) a creatinine removal level; and an output interface providing an indication to the patient of a completion of the dialysis dwell time.
Abstract:
A system for monitoring water quality for dialysis, dialysis fluids, and body fluids treated by dialysis fluids, is disclosed. The system uses microelectromechanical systems (MEMS) sensors for detecting impurities in input water or dialysis fluid, and in the prepared dialysate. These sensors may also be used to monitor and check the blood of the patient being treated. These sensors include ion-selective sensors, for ions such as ammonium or calcium, and also include amperometric array sensors, suitable for ions from chlorine or chloramines, e.g., chloride. These sensors assist in the monitoring of water supplies from a city water main or well. The sensors may be used in conjunction with systems for preparing dialysate solutions from water for use at home or elsewhere.
Abstract:
A system for performing a peritoneal dialysis therapy includes at least one dialysis fluid pump, and a control unit operable with the at least one dialysis fluid pump to perform a plurality of peritoneal dialysis cycles, the cycles including a fill phase, a dwell phase and a drain phase. The control unit configured to (i) store a previously entered continuous cycling peritoneal dialysis (“CCPD”) therapy having a total prescribed fresh dialysate fill volume delivered over n cycles, the cycles performed over a total therapy duration, and (ii) automatically convert the CCPD therapy into a tidal peritoneal dialysis therapy having n+1 cycles, less a number of cycles already completed during the CCPD therapy, using the total prescribed fresh dialysis fill volume, and maintaining the total therapy duration.
Abstract:
A hemodialysis system includes: (i) a dialyzer; (ii) a dialysate source; a dialysate pump; (iii) a dialysate cassette operatively connected to the dialysate pump such that the dialysate pump can pump dialysate through the dialysate cassette when the dialysate cassette is in fluid communication with the dialysate source, the dialysate cassette in fluid communication with the dialyzer; (iv) a blood pump; and (v) a blood cassette separate from the dialysate cassette, the blood cassette operatively connected to the blood pump such that the blood pump can pump blood through the blood cassette, the blood cassette including a housing, the housing including a from-patient tube connector, a to-patient tube connector, a saline/priming tube connnector, a to-dialyzer tube connector, a from-dialyzer tube connector, and an internal air separation chamber.
Abstract:
Dialysis treatment devices and methods for removing urea from dialysis waste streams are provided. In a general embodiment, the present disclosure provides a dialysis treatment device including: 1) a first filter having a filtration membrane, 2) a urea removal unit having urease and in fluid communication with the first filter, and 3) a second filter having an ion rejection membrane and in fluid communication with the first filter and the urea removal unit.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source and an electrodeionization unit. The carbon source and urease source can be in the form of removable cartridges.
Abstract:
A medical fluid or dialysis system includes an auto-connection mechanism that connects connectors from the supply bags to dialysis cassette ports or cassette supply lines. The system provides for multiple, e.g., four, supply bags, which can be connected to a manifold of the auto-connection mechanism. Tip protecting caps that protect the supply line ends and cassette ports or cassette supply line ends are made to be compatible with the auto-connection mechanism. The auto-connection mechanism removes all the caps and connects the supply lines to the cassette. At least one roller occluder is provided that occludes the supply tubing prior to the tip protecting caps being removed. The roller occludes prevent medical dialysis fluid from spilling out of the supply lines between the time that the caps are removed and connection to the cassette is made.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodialysis and electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source, an ED/EDI unit. The carbon source, urease source, and/or the ED/EDI unit can be in the form of removable cartridges.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodialysis and electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source, an ED/EDI unit. The carbon source, urease source, and/or the ED/EDI unit can be in the form of removable cartridges.