Abstract:
The present disclosure relates to a display panel. The display panel may include a substrate. The substrate may include a display area, a dummy area inside the display area, and a boundary area between the dummy area and the display area on the substrate. The display substrate may further include an isolation protrusion on the substrate at the boundary area. The isolation protrusion may be configured to isolate a functional layer in the display area from the functional layer in the dummy area, and at least a side surface of the isolation protrusion facing the dummy area may be covered by an isolation inorganic layer.
Abstract:
An OLED display panel, a method for manufacturing the same and an OLED display device are disclosed. The OLED display panel comprises a flat region and a curved region, wherein the OLED display panel comprises a light-emitting element in the flat region and a light-emitting element in the curved region, each light-emitting element comprises a cathode and an anode, and a distance between the anode and the cathode of the light-emitting element in the curved region is greater than a distance between the anode and the cathode of the light-emitting element in the flat region.
Abstract:
There is provided a display substrate, a manufacturing method thereof, and a display device, relating to the field of display technology. The display substrate includes: a base substrate; a self-luminescent layer disposed on a side of the base substrate; and an encapsulation film layer disposed on a side of the self-luminescent layer away from the base substrate. The display substrate has a gap, which penetrates through the self-luminescent layer and the encapsulation film layer, and separates the self-luminescent layer and the encapsulation film layer into at least two parts with a part corresponding to a to-be-perforated area of the display substrate and another part corresponds to a non-perforated area of the display substrate other than the to-be-perforated area. The edge of the encapsulation film layer adjacent to the gap covers the side surface of the edge of the self-luminescent layer adjacent to the gap.
Abstract:
A support structure, a manufacturing method thereof and a display device are provided. The support structure includes a metal substrate, and a buffer layer provided on the metal substrate; the support structure includes a bending region and a non-bending region; a portion of the metal substrate located in the bending region has a recess so that a thickness of the portion of the metal substrate located in the bending region is smaller than a thickness of a portion of the metal substrate located in the non-bending region; and the buffer layer is provided on a side of the metal substrate having the recess, and is at least located in the recess.
Abstract:
A display substrate having a display area and a peripheral area. The display panel includes a base substrate; a first power pad on the base substrate, the first power pad including a first portion in the peripheral area and along a power line interface side of the display substrate; a planarization layer on a side of the first power pad away from the base substrate; a pixel definition layer on a side of the planarization layer away from the base substrate, defining a plurality of subpixel apertures; and an encapsulating layer on a side of the pixel definition layer away from the base substrate. The display substrate includes a first groove extending through one or a combination of the planarization layer and the pixel definition layer, exposing a surface of the first portion of the first power pad in the peripheral area.
Abstract:
The present disclosure provides a display device, a display panel, and a fabricating method, and generally relates to the field of display technology. The display panel of the present disclosure comprises a substrate, a drive layer, a separation layer, a display device layer, and a through hole. The substrate has an opening zone, a transition zone surrounding the opening zone, and a display area surrounding the transition zone. The drive layer is disposed on a side of the substrate and covering the opening zone, the transition zone, and the display area. The separation layer is disposed on a surface of the drive layer away from the substrate and is located in the transition zone. The display panel of the present disclosure can prevent water and oxygen from entering the display area to prevent erosion of the display device.
Abstract:
An OLED display panel includes: a substrate; a pixel defining layer disposed on the substrate and defining a pixel region and a non-pixel region outside the pixel region; a spacer layer disposed in the non-pixel region; and an organic light-emitting layer including: a first portion disposed in the pixel region, and a second portion disposed in the non-pixel region. A surface of at least one of the pixel defining layer or the spacer layer has a contact portion which is in contact with the organic light-emitting layer and which is rough.
Abstract:
An OLED display panel, a method for manufacturing the same and an OLED display device are disclosed. The OLED display panel comprises a flat region and a curved region, wherein the OLED display panel comprises a light-emitting element in the flat region and a light-emitting element in the curved region, each light-emitting element comprises a cathode and an anode, and a distance between the anode and the cathode of the light-emitting element in the curved region is greater than a distance between the anode and the cathode of the light-emitting element in the flat region.
Abstract:
The present disclosure discloses a forgery-proof label and a fabrication method thereof. The forgery-proof label includes a thin film battery and an OLED display unit operable to display a first preset pattern when being powered by the thin film battery. The forgery-proof label is easy to recognize and difficult to reuse.
Abstract:
This present disclosure provides an encapsulating layer, an electronic package device and a display apparatus, relates to the field of electronics technology, and may decrease the thickness of the encapsulating layer, thereby achieving lightening and thinning of the electronic package device. The encapsulating layer comprises an encapsulating barrier layer and an organic coating layer directly formed on the encapsulating barrier layer; wherein the organic coating layer is a polymerizable organic coating layer; and the polymerizable organic coating layer comprises an unsaturated acrylate organic coating layer. The encapsulating layer is used for encapsulating an electronic device.