Abstract:
A method and system configures proximity indication in a wireless device as part of a network handover procedure to handover the wireless device from a first radio access network (RAN) using a radio access technology (RAT) to a second RAN using a different RAT. The first RAN may use third generation (3G) wireless technology to initiate a process to hand over a wireless device to the second RAN, which utilizes long term evolution (LTE) technology. As part of the handover process, the second RAN generates a handover command message that additionally includes proximity indication configuration information to enable the wireless device to configure proximity indication reporting. The handover command message is sent through the first RAN to the wireless device, where the handover command message is utilized to configure proximity indication reporting and to perform the handover from the first RAN to the second RAN.
Abstract:
A method for enhancing transmission efficiency in a transmitter of a wireless communication system includes forming a first RLC PDU and a second RLC PDU with a size equal to a size of the first RLC PDU in an RLC layer, submitting the first RLC PDU and the second RLC PDU to a MAC layer via a logic channel, combining the first RLC PDU with the second RLC PDU into a MAC PDU, forming a header including a plurality of fields indicating parameters of the first RLC PDU and a specified field indicating parameters of the second RLC PDU in the MAC PDU, and transmitting the MAC PDU to a peer receiver.
Abstract:
A mobile device initiates an RRC connection reestablishment procedure or a cell update procedure for an emergency call after experiencing a failure condition in an LTE network environment. The mobile device establishes an RRC connection with an acceptable cell to originate an emergency call. The mobile device detects a failure condition, such as a radio link failure, which disrupts the RRC connection. The mobile device searches for available cells that it may reestablish the RRC connection with, but can only find acceptable cells. The mobile device may initiate an RRC connection reestablishment procedure with an acceptable cell. The mobile device may also only attempt to reestablish the RRC connection with a cell that is part of a PLMN that the original acceptable cell was also a part of. The mobile device may also enter an RRC_IDLE mode upon detecting a failure condition.
Abstract:
A method of performing uplink transmission for a mobile device configured with a primary component carrier and at least one secondary component carrier in a wireless communication system is disclosed. The method comprises steps of receiving a first uplink grant for transmission in a subframe; receiving a second uplink grant in a Random Access Response message for transmission on the primary component carrier in the subframe; and performing transmission in the subframe according to which of the primary component carrier and the at least one secondary component carrier the first uplink grant is received for.
Abstract:
A method of handling Semi-Persistent Scheduling (SPS) Cell Radio Network Temporary Identifier (C-RNTI) for a mobile device configured with a primary component carrier, at least one secondary component carrier and an SPS C-RNTI in a wireless communication system is disclosed. The method comprises steps of performing a Physical Downlink Control Channel (PDCCH) validation process for an SPS information; and determining the SPS information is valid if the PDCCH validation process is valid and the SPS information is received on the primary component carrier.
Abstract:
A method of changing a primary component carrier (PCC) for a mobile device in a wireless communication system is disclosed. The method comprises receiving a handover command from a network of the wireless communication system to change a first uplink primary component carrier of a first plurality of uplink component carriers or a first downlink primary component carrier of a first plurality of downlink component carriers, and performing a random access channel (RACH) procedure on at least one of uplink component carriers according to the handover command.
Abstract:
A mobile communications device with a wireless module and a controller module is provided. The wireless module performs wireless transmissions and receptions to and from a cellular station. The controller module receives a detachment request message comprising a detachment cause from the cellular station via the wireless module, and determines whether the detachment cause indicates unauthorized membership of a closed subscriber group (CSG) supported by the cellular station. Also, the controller module determines whether the cellular station is a non-CSG cell in response to the detachment cause indicating unauthorized membership of the CSG supported by the cellular station, and keeps an allowed CSG list unmodified in response to the cellular station being a non-CSG cell.
Abstract:
The techniques introduced herein provide a system and method for determining whether an inter-RAT handover is an SRVCC handover, and for performing the subsequent SRVCC handover. The techniques include receiving a handover command message that does not include SRVCC related information elements, for example “RAB info to replace,” but continuing with an SRVCC handover using a circuit-switched RAB provided in the information for setup. The techniques also include receiving a handover command message that does include SRVCC related information elements and performing the SRVCC handover by an alternative method.
Abstract:
A method for handling security in an SRVCC handover for a mobile device in a wireless communication device is disclosed. The method includes having an active Circuit-Switched (CS) service or a Radio Resource Control (RRC) connection in a CS domain when the mobile device is served by a first network, wherein the first network supports the CS domain and a Packet-Switched (PS) domain; receiving a handover command to handover from the first network to a second network, wherein the second network supports the PS domain; deriving a plurality of security keys used in the second network from a plurality of CS domain keys used in the first network; and applying the plurality of security keys for transmission and reception in the second network.
Abstract:
A method of handling call origination for a mobile device in a wireless communication system is disclosed. The method comprises the steps of originating a service, establishing a radio resource control (RRC) connection corresponding to the service, receiving a message from a network via the RRC connection, determining whether the network supports the service supported of a first service domain, according to the message and performing the service in a second service domain when the network does not support the service of the first service domain, whereby the RRC connection is not released by the mobile device.