-
公开(公告)号:US10996296B2
公开(公告)日:2021-05-04
申请号:US16735126
申请日:2020-01-06
Applicant: Hyperfine Research, Inc.
Inventor: Todd Rearick , Jeremy Christopher Jordan , Gregory L. Charvat , Matthew Scot Rosen
Abstract: Some aspects comprise a tuning system configured to tune a radio frequency coil for use with a magnetic resonance imaging system comprising a tuning circuit including at least one tuning element configured to affect a frequency at which the radio frequency coil resonates, and a controller configured to set at least one value for the tuning element to cause the radio frequency coil to resonate at approximately a Larmor frequency of the magnetic resonance imaging system determined by the tuning system. Some aspects include a method of automatically tuning a radio frequency coil comprising determining information indicative of a Larmor frequency of the magnetic resonance imaging system, using a controller to automatically set at least one value of a tuning circuit to cause the radio frequency coil to resonate at approximately the Larmor frequency based on the determined information.
-
公开(公告)号:US10890634B2
公开(公告)日:2021-01-12
申请号:US16418379
申请日:2019-05-21
Applicant: Hyperfine Research, Inc.
Inventor: Hadrien A. Dyvorne , Todd Rearick
IPC: G01R33/34 , G01R33/44 , G01R33/36 , G01R33/00 , G01R33/385 , G01R33/565
Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
-
公开(公告)号:US20200337644A1
公开(公告)日:2020-10-29
申请号:US16926272
申请日:2020-07-10
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Gregory L. Charvat , Todd Rearick , Jonathan M. Rothberg
Abstract: Aspects relate to providing radio frequency components responsive to magnetic resonance signals. According to some aspects, a radio frequency component comprises at least one coil having a conductor arranged in a plurality of turns oriented about a region of interest to respond to corresponding magnetic resonant signal components. According to some aspects, the radio frequency component comprises a plurality of coils oriented to respond to corresponding magnetic resonant signal components. According to some aspects, an optimization is used to determine a configuration for at least one radio frequency coil.
-
公开(公告)号:US10684335B2
公开(公告)日:2020-06-16
申请号:US16275285
申请日:2019-02-13
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/383 , G01R33/44 , A61B50/13 , G01R33/389 , G01R33/421 , G01R33/56 , G01R33/38 , A61B5/055 , A61B6/00 , A61G13/10 , G01R33/34 , G01R33/48 , A61B90/00 , G01R33/3873 , G01R33/36 , G01R33/422
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied. According to some aspects, substantially no shielding of the imaging region of the portable magnetic resonance imaging system is provided.
-
公开(公告)号:US10649050B2
公开(公告)日:2020-05-12
申请号:US16667813
申请日:2019-10-29
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, Jr. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/48 , G01R33/385 , G01R33/34 , A61G13/10 , A61B6/00 , A61B5/055 , G01R33/38 , G01R33/56 , G01R33/421 , G01R33/389 , A61B50/13 , G01R33/44 , G01R33/383 , A61B90/00 , G01R33/422 , G01R33/36 , G01R33/3873
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US20200064427A1
公开(公告)日:2020-02-27
申请号:US16667813
申请日:2019-10-29
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , A61B90/00 , G01R33/48 , G01R33/34 , A61G13/10 , A61B6/00 , A61B5/055 , G01R33/38 , G01R33/56 , G01R33/421 , G01R33/389 , A61B50/13 , G01R33/44 , G01R33/383
Abstract: According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.
-
公开(公告)号:US20190353727A1
公开(公告)日:2019-11-21
申请号:US16418397
申请日:2019-05-21
Applicant: Hyperfine Research, Inc.
Inventor: Hadrien A. Dyvorne , Todd Rearick
IPC: G01R33/385 , G01R33/00 , G01R33/565
Abstract: Methods and apparatus for reducing noise in RF signal chain circuitry for a low-field magnetic resonance imaging system are provided. A switching circuit in the RF signal chain circuitry may include at least one field effect transistor (FET) configured to operate as an RF switch at an operating frequency of less than 10 MHz. A decoupling circuit may include tuning circuitry coupled across inputs of an amplifier and active feedback circuitry coupled between an output of the amplifier and an input of the amplifier, wherein the active feedback circuitry includes a feedback capacitor configured to reduce a quality factor of an RF coil coupled to the amplifier.
-
公开(公告)号:US20190086497A1
公开(公告)日:2019-03-21
申请号:US16195518
申请日:2018-11-19
Applicant: Hyperfine Research, Inc.
Inventor: Todd Rearick , Gregory L. Charvat , Matthew Scot Rosen , Jonathan M. Rothberg
IPC: G01R33/56 , G01R33/36 , G01R33/565 , G01R33/385 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/383 , G01R33/54 , G01R33/38 , G01R33/44 , G01R33/381 , G01R33/3875 , G01R33/34 , G01R33/28 , G01R33/422
Abstract: According to some aspects, a method of suppressing noise in an environment of a magnetic resonance imaging system is provided. The method comprising estimating a transfer function based on multiple calibration measurements obtained from the environment by at least one primary coil and at least one auxiliary sensor, respectively, estimating noise present in a magnetic resonance signal received by the at least one primary coil based at least in part on the transfer function, and suppressing noise in the magnetic resonance signal using the noise estimate.
-
公开(公告)号:US20190004130A1
公开(公告)日:2019-01-03
申请号:US16122661
申请日:2018-09-05
Applicant: Hyperfine Research, Inc.
Inventor: Michael Stephen Poole , Cedric Hugon , Hadrien A. Dyvorne , Laura Sacolick , William J. Mileski , Jeremy Christopher Jordan , Alan B. Katze, JR. , Jonathan M. Rothberg , Todd Rearick , Christopher Thomas McNulty
IPC: G01R33/385 , G01R33/383 , G01R33/389 , A61B50/13 , A61B90/00
Abstract: According to some aspects, a portable magnetic resonance imaging system is provided, comprising a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shield comprises at least one electromagnetic shield structure adjustably coupled to the housing to provide electromagnetic shielding for the imaging region in an amount that can be varied.
-
80.
公开(公告)号:US09541616B2
公开(公告)日:2017-01-10
申请号:US15049309
申请日:2016-02-22
Applicant: Hyperfine Research, Inc.
Inventor: Jonathan M. Rothberg , Matthew Scot Rosen , Gregory L. Charvat , William J. Mileski , Todd Rearick , Michael Stephen Poole
IPC: G01V3/00 , G01R33/38 , G01R33/36 , G01R33/385 , G01R33/44 , G01R33/58 , G01R33/48 , H01F7/02 , H01F7/06 , G01R33/381 , G01R33/383 , G01R33/3875 , G01R33/54 , G01R33/56 , G01R33/34 , G01R33/422
CPC classification number: G01R33/5608 , G01R33/28 , G01R33/34007 , G01R33/36 , G01R33/3614 , G01R33/38 , G01R33/3802 , G01R33/3804 , G01R33/3806 , G01R33/381 , G01R33/383 , G01R33/385 , G01R33/3852 , G01R33/3854 , G01R33/3856 , G01R33/3858 , G01R33/3875 , G01R33/422 , G01R33/445 , G01R33/48 , G01R33/543 , G01R33/546 , G01R33/56 , G01R33/56518 , G01R33/58 , H01F7/02 , H01F7/06
Abstract: According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
Abstract translation: 根据一些方面,提供了层压板。 层压板包括至少一层层压层,其包括至少一层非导电层和至少一层图案化的导电层,以形成B0线圈的至少一部分,该B0线圈配置为有助于适用于低场磁共振的B0场 成像(MRI)。
-
-
-
-
-
-
-
-
-