摘要:
A silicon-based opto-electronic circuit is formed to exhibit reduced polarization-dependent loss by strategically placing the photodetecting device as close as possible to the entry point of the optical signal into the opto-electronic circuit arrangement. While the incoming optical signal will include both TE and TM modes, by minimizing the length of the optical waveguide path along which the signal must propagate before reaching a photodetector, the attenuation associated with TM mode signal will be negligible.
摘要:
A silicon-based optical modulator is configured as a multi-segment device that utilizes a modified electrical data input signal format to address phase modulation nonlinearity and attenuation problems associated with free-carrier dispersion-based modulation. The modulator is formed to include M separate segments and a digital signal encoder is utilized to convert an N bit input data signal into a plurality of M drive signals for the M modulator segments, where M≧2N/2. The lengths of the modulator segments may also be adjusted to address the nonlinearity and attenuation problems. Additional phase adjustments may be utilized at the output of the modulator (beyond the combining waveguide).
摘要:
A silicon-based optical modulator is configured as a multi-segment device that utilizes a modified electrical data input signal format to address phase modulation nonlinearity and attenuation problems associated with free-carrier dispersion-based modulation. The modulator is formed to include M separate segments and a digital signal encoder is utilized to convert an N bit input data signal into a plurality of M drive signals for the M modulator segments, where M≧2N/2. The lengths of the modulator segments may also be adjusted to address the nonlinearity and attenuation problems. Additional phase adjustments may be utilized at the output of the modulator (beyond the combining waveguide).