Abstract:
A moving floor system that includes a moving work surface to move work products from an upstream end to a downstream end. The moving work surface is formed from a plurality of individual carts joined to each other. The stack of carts is moved along upper support rails located at an upper level. When each individual cart reaches the downstream end, a downstream lift conveyor moves the individual cart from the upper level to a lower level. When at the lower level, each individual cart is returned from the downstream end to the upstream end. When each individual cart reaches the upstream end, an upstream lift conveyor returns the individual carts from the lower level to the upper level. An upper drive mechanism provides the motive force to move the stack of carts along the upper level at the working speed.
Abstract:
A silicon-based optical modulator exhibiting improved modulation efficiency and control of “chirp” (i.e., time-varying optical phase) is provided by separately biasing a selected, first region of the modulating device (e.g., the polysilicon region, defined as the common node). In particular, the common node is biased to shift the voltage swing of the silicon-based optical modulator into its accumulation region, which exhibits a larger change in phase as a function of applied voltage (larger OMA) and improved extinction ratio. The response in the accumulation region is also relatively linear, allowing for the chirp to be more easily controlled. The electrical modulation input signal (and its inverse) are applied as separate inputs to the second region (e.g., the SOI region) of each arm of the modulator.
Abstract:
A method and system for controlling the operation of a drive motor for a vertical reciprocating conveyor. The method initially activates a drive motor to move a carriage from a resting position. After initial start-up period, the method sets a threshold current value as the present current value being drawn by the drive motor. The method compares subsequent present current value measurements to the threshold current value and determines whether the present current value exceeds or falls below the threshold current value by more than an operating limit. If the present current value falls within the operating limits, the threshold current value is updated to the present current value on a periodic basis. In this manner, the method continuously updates the threshold current value to compensate for an increase in the weight being lifted by the vertical reciprocating conveyor.
Abstract:
An optical coupler is formed of a low index material and exhibits a mode field diameter suitable to provide efficient coupling between a free space optical signal (of large mode field diameter) and a single mode high index waveguide formed on an optical substrate. One embodiment comprises an antiresonant reflecting optical waveguide (ARROW) structure in conjunction with an embedded (high index) nanotaper coupling waveguide. Another embodiment utilizes a low index waveguide structure disposed in an overlapped arrangement with a high index nanotaper coupling waveguide. The low index waveguide itself includes a tapered region that overlies the nanotaper coupling waveguide to facilitate the transfer of the optical energy from the low index waveguide into an associated single mode high index waveguide. Methods of forming these devices using CMOS processes are also disclosed.
Abstract:
A high speed silicon-based optical modulator with control of the dopant profiles in the body and gate regions of the device reduces the series resistance of the structure without incurring substantial optical power loss. That is, the use of increased dopant values in areas beyond the active region will allow for the series resistance to be reduced (and thus increase the modulating speed of the device) without incurring too large a penalty in signal loss. The dopant profiles within the gate and body regions are tailored to exhibit an intermediate value between the high dopant concentration in the contact areas and the low dopant concentration in the carrier integration window area.
Abstract:
One embodiment of the present invention provides a system that facilitates dynamic delivery of service profiles to a client. During operation, the system performs a discovery operation to allow the client to discover new services on a network. If a new service is discovered for which the client does not possess a service profile, the client to obtains the service profile from the new service and subsequently installs it, thereby enabling the client to interact with the new service.
Abstract:
Methods and systems for transmitter diversity expansion are provided. The methods and systems include steps and modules for applying a number of data streams (K) to a larger number of antennas (N). This is performed by applying each of the data streams to a single base antenna, such that K data streams are applied to K base antennas, and by shifting and combining the K data streams to produce N-K data streams to apply to N-K extension antennas.
Abstract:
An optical coupler is formed of a low index material and exhibits a mode field diameter suitable to provide efficient coupling between a free space optical signal (of large mode field diameter) and a single mode high index waveguide formed on an optical substrate. One embodiment comprises an antiresonant reflecting optical waveguide (ARROW) structure in conjunction with an embedded (high index) nanotaper coupling waveguide. Another embodiment utilizes a low index waveguide structure disposed in an overlapped arrangement with a high index nanotaper coupling waveguide. The low index waveguide itself includes a tapered region that overlies the nanotaper coupling waveguide to facilitate the transfer of the optical energy from the low index waveguide into an associated single mode high index waveguide. Methods of forming these devices using CMOS processes are also disclosed.
Abstract:
A silicon-insulator-silicon capacitive (SISCAP) optical modulator is configured to provide analog operation for applications which previously required the use of relatively large, power-consuming and expensive lithium niobate devices. An MZI-based SISCAP modulator (preferably a balanced arrangement with a SISCAP device on each arm) is responsive to an incoming high frequency electrical signal and is biased in a region where the capacitance of the device is essentially constant and the transform function of the MZI is linear.
Abstract:
One embodiment of the present invention provides a system that facilitates transferring data between system components. During operation, the system receives a transfer session object at a data sink component through a universal data transfer interface, wherein the transfer session object contains mobile code that implements a source-specific data transfer protocol for communicating with a data source component. Next, the system retrieves data from the data source component through the transfer session object. In this way, the data sink component can retrieve data from the data source component without having to be preconfigured with the source-specific data transfer protocol for communicating with the data source component.