Abstract:
There are provided source-to-source transformation methods for a multi-dimensional array and/or a multi-level pointer for a computer program. A method includes minimizing a number of holes for variable length elements for a given dimension of the array and/or pointer using at least two stride values included in stride buckets. The minimizing step includes modifying memory allocation sites, for the array and/or pointer, to allocate memory based on the stride values. The minimizing step further includes modifying a multi-dimensional memory access, for accessing the array and/or pointer, into a single dimensional memory access using the stride values. The minimizing step also includes inserting offload pragma for a data transfer of the array and/or pointer prior as at least one of a single-dimensional array and a single-level pointer. The data transfer is from a central processing unit to a coprocessor over peripheral component interconnect express.
Abstract:
Methods and systems for scheduling jobs to manycore nodes in a cluster include selecting a job to run according to the job's wait time and the job's expected execution time; sending job requirements to all nodes in a cluster, where each node includes a manycore processor; determining at each node whether said node has sufficient resources to ever satisfy the job requirements and, if no node has sufficient resources, deleting the job; creating a list of nodes that have sufficient free resources at a present time to satisfy the job requirements; and assigning the job to a node, based on a difference between an expected execution time and associated confidence value for each node and a hypothetical fastest execution time and associated hypothetical maximum confidence value.
Abstract:
Systems and methods for a deep learning-based quality control for video compression. Video quality of a streaming media can be updated using an optimized quantization parameters (QP). Optimized QP can be predicted from the video chunks and their respective QP that conforms to a peak signal-to-noise ratio (PSNR) threshold while minimizing an encoded video bitrate of the compressed video by utilizing a trained video quality control unit. Video chunks can be encoded with respective QP. Video chunks can be partitioned from video data obtained from the streaming media.
Abstract:
Methods and systems for context reduction include identifying a context document relating to a query. A number of sentences of the context document to preserve is determined. The sentences of the context document are ranked according to respective similarities between the sentences and the query. A reduced context is generated that preserves the determined number of highest ranked sentences of the context document and eliminates other sentences from the context document. The query is executed with a language model, including the reduced context in a prompt, to generate a response.
Abstract:
A method for performing resource orchestration for microservices-based 5G applications in a dynamic, heterogenous, multi-tiered compute and network environment is presented. The method includes managing compute requirements and network requirements of a microservices-based application jointly by positioning computing nodes distributed across multiple layers, across edges and at a central cloud, identifying and modeling coupling relationships between compute and network resources for a plurality of microservices, when only application-level requirements are provided, to build coupling functions, solving a multi-objective optimization problem to identify how each of the plurality of microservices are deployed in the dynamic, heterogenous, multi-tiered compute and network environment by employing the coupling functions to jointly optimize resource usage of the compute and network resources across different compute and network slices, and deriving optimal joint network and compute resource allocation and function placement decisions.
Abstract:
Methods and systems for executing an application include extending a container orchestration system application programming interface (API) to handle objects that specify components of an application. An application representation is executed using the extended container orchestration system API, including the instantiation of one or more services that define a data stream path from a sensor to a device.
Abstract:
Systems and methods are provided for increasing accuracy of video analytics tasks in real-time by acquiring a video using video cameras, and identifying fluctuations in the accuracy of video analytics applications across consecutive frames of the video. The identified fluctuations are quantified based on an average relative difference of true-positive detection counts across consecutive frames. Fluctuations in accuracy are reduced by applying transfer learning to a deep learning model initially trained using images, and retraining the deep learning model using video frames. A quality of object detections is determined based on an amount of track-ids assigned by a tracker across different video frames. Optimization of the reduction of fluctuations includes iteratively repeating the identifying, the quantifying, the reducing, and the determining the quality of object detections until a threshold is reached. Model predictions for each frame in the video are generated using the retrained deep learning model.
Abstract:
Systems and methods for video analytic processing with neuro-symbolic artificial intelligence are provided. These systems and methods include detecting and extracting one or more objects from one or more video frames, and identifying the attributes associated with each of the one or more objects. These further include extracting context from a question, and compiling a series of inquiries to identify the information needed to answer the question and identify missing information. These further include storing intermediate information about the extracted objects and identified attributes, and determining whether the question requires further modeling of data to obtain missing information. These further include mining the one or more video frames for missing information, and compiling the intermediate information from the data storage and missing information based on the context of the question to produce a final answer.
Abstract:
Methods and systems for managing communications include identifying a system condition in a distributed computing system comprising a first microservice in communication with a second microservice. A communications method is identified responsive to the identified system condition using a reinforcement learning model that associates communication methods with system conditions. The identified communications method is implemented for communications between the first microservice and the second microservice, such that the first microservice and the second microservice use the identified communications method to transmit data.
Abstract:
Systems and methods for network bandwidth optimization, including transmitting sensor data from one or more sensors over a wireless network into a generated network slice, submitting a Quality-of-Service (QoS) request for one or more applications by specifying desired network slice characteristics, and predicting network bandwidth needed for granting the QoS request for the one or more applications using a cost function based on magnitude, direction, and frequency of error. Time-varying network bandwidth usage is continuously monitored, and new QoS requests for the one or more applications are periodically requested based on the monitoring. An updated prediction for updated bandwidth needed for the new QoS request is generated using the cost function, and network bandwidth reservations are iteratively adjusted based on the updated prediction for the new QoS request to provide an amount of network resources to the one or more applications to support the new QoS request.