DOMAIN GENERALIZABLE CONTINUAL LEARNING USING COVARIANCES

    公开(公告)号:US20230153572A1

    公开(公告)日:2023-05-18

    申请号:US17971204

    申请日:2022-10-21

    CPC classification number: G06N3/04 G06N3/082

    Abstract: A computer-implemented method for model training is provided. The method includes receiving, by a hardware processor, sets of images, each set corresponding to a respective task. The method further includes training, by the hardware processor, a task-based neural network classifier having a center and a covariance matrix for each of a plurality of classes in a last layer of the task-based neural network classifier and a plurality of convolutional layers preceding the last layer, by using a similarity between an image feature of a last convolutional layer from among the plurality of convolutional layers and the center and the covariance matrix for a given one of the plurality of classes, the similarity minimizing an impact of a data model forgetting problem.

    FACE RECOGNITION FROM UNSEEN DOMAINS VIA LEARNING OF SEMANTIC FEATURES

    公开(公告)号:US20220147765A1

    公开(公告)日:2022-05-12

    申请号:US17519950

    申请日:2021-11-05

    Abstract: A method for improving face recognition from unseen domains by learning semantically meaningful representations is presented. The method includes obtaining face images with associated identities from a plurality of datasets, randomly selecting two datasets of the plurality of datasets to train a model, sampling batch face images and their corresponding labels, sampling triplet samples including one anchor face image, a sample face image from a same identity, and a sample face image from a different identity than that of the one anchor face image, performing a forward pass by using the samples of the selected two datasets, finding representations of the face images by using a backbone convolutional neural network (CNN), generating covariances from the representations of the face images and the backbone CNN, the covariances made in different spaces by using positive pairs and negative pairs, and employing the covariances to compute a cross-domain similarity loss function.

    DEEP FACE RECOGNITION BASED ON CLUSTERING OVER UNLABELED FACE DATA

    公开(公告)号:US20210142046A1

    公开(公告)日:2021-05-13

    申请号:US17091066

    申请日:2020-11-06

    Abstract: A computer-implemented method for implementing face recognition includes obtaining a face recognition model trained on labeled face data, separating, using a mixture of probability distributions, a plurality of unlabeled faces corresponding to unlabeled face data into a set of one or more overlapping unlabeled faces that include overlapping identities to those in the labeled face data and a set of one or more disjoint unlabeled faces that include disjoint identities to those in the labeled face data, clustering the one or more disjoint unlabeled faces using a graph convolutional network to generate one or more cluster assignments, generating a clustering uncertainty associated with the one or more cluster assignments, and retraining the face recognition model on the labeled face data and the unlabeled face data to improve face recognition performance by incorporating the clustering uncertainty.

    Face recognition using larger pose face frontalization

    公开(公告)号:US10474880B2

    公开(公告)日:2019-11-12

    申请号:US15888629

    申请日:2018-02-05

    Abstract: A face recognition system is provided. The system includes a device configured to capture an input image of a subject. The system further includes a processor. The processor estimates, using a 3D Morphable Model (3DMM) conditioned Generative Adversarial Network, 3DMM coefficients for the subject of the input image. The subject varies from an ideal front pose. The processor produces, using an image generator, a synthetic frontal face image of the subject of the input image based on the input image and the 3DMM coefficients. An area spanning the frontal face of the subject is made larger in the synthetic image than in the input image. The processor provides, using a discriminator, a decision indicative of whether the subject of the synthetic image is an actual person. The processor provides, using a face recognition engine, an identity of the subject in the input image based on the synthetic and input images.

    Camera system for traffic enforcement

    公开(公告)号:US10289823B2

    公开(公告)日:2019-05-14

    申请号:US15637368

    申请日:2017-06-29

    Abstract: A traffic enforcement system and corresponding method are provided. The traffic enforcement system includes a camera configured to capture an input image of one or more subjects in a motor vehicle. The traffic enforcement system further includes a memory storing a deep learning model configured to perform multi-task learning for a pair of tasks including a liveness detection task and a face recognition task on one or more subjects in a motor vehicle depicted in the input image. The traffic enforcement system also includes a processor configured to apply the deep learning model to the input image to recognize an identity the one or more subjects in the motor vehicle and a liveness of the one or more subjects. The liveness detection task is configured to evaluate a plurality of different distractor modalities corresponding to different physical spoofing materials to prevent face spoofing for the face recognition task.

    LONG-TAIL LARGE SCALE FACE RECOGNITION BY NON-LINEAR FEATURE LEVEL DOMAIN ADAPTION

    公开(公告)号:US20190095704A1

    公开(公告)日:2019-03-28

    申请号:US16145257

    申请日:2018-09-28

    Abstract: A computer-implemented method, system, and computer program product are provided for facial recognition. The method includes receiving, by a processor device, a plurality of images. The method also includes extracting, by the processor device with a feature extractor utilizing a convolutional neural network (CNN) with an enlarged intra-class variance of long-tail classes, feature vectors for each of the plurality of images. The method additionally includes generating, by the processor device with a feature generator, discriminative feature vectors for each of the feature vectors. The method further includes classifying, by the processor device utilizing a fully connected classifier, an identity from the discriminative feature vector. The method also includes control an operation of a processor-based machine to react in accordance with the identity.

Patent Agency Ranking