Abstract:
An apparatus includes a slider body of a disk drive. The slider body is electrically coupled to a plurality of end bond pads. A voltage applied to one more of the end bond pads sets a surface potential of the slider body.
Abstract:
A temperature sensor of a head transducer measures temperature near or at the close point. The measured temperature varies in response to changes in spacing between the head transducer and a magnetic recording medium. A detector is coupled to the temperature sensor and is configured to detect a change in a DC component of the measured temperature indicative of onset of contact between the head transducer and the medium. Another head transducer configuration includes a sensor having a sensing element with a high temperature coefficient of resistance to interact with asperities of the medium. Electrically conductive leads are connected to the sensing element and have a low temperature coefficient of resistance relative to that of the sensing element, such thermally induced resistance changes in the leads have a negligible effect on a response of the sensing element to contact with the asperities.
Abstract:
A writer core of a transducer is configured to interact with a magnetic recording medium and comprises an upper core and a lower core. At least one of the upper and lower cores comprises a return pole having a return shield. The apparatus also comprises a writer pole between the upper and lower cores, and a writer gap defined between the writer pole and the return shield. The apparatus further comprises a sensor element within one of the upper and lower cores that includes the writer gap. The sensor element has a temperature coefficient of resistance and is configured to sense for a change in temperature indicative of one or both of a change in spacing and contact between the transducer and the magnetic recording medium.
Abstract:
A writer core of a transducer is configured to interact with a magnetic recording medium and comprises an upper core and a lower core. At least one of the upper and lower cores comprises a return pole having a return shield. The apparatus also comprises a writer pole between the upper and lower cores, and a writer gap defined between the writer pole and the return shield. The apparatus further comprises a sensor element within one of the upper and lower cores that includes the writer gap. The sensor element has a temperature coefficient of resistance and is configured to sense for a change in temperature indicative of one or both of a change in spacing and contact between the transducer and the magnetic recording medium.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
An apparatus includes a writer, an arrangement comprising a plasmonic near-field transducer (NFT) adjacent the writer and comprising a material having a temperature coefficient of resistance (TCR), and a lead arrangement connected to the NFT arrangement. In some configurations, the NFT arrangement includes a heat sink, and the lead arrangement is connected to the heat sink. In other configurations, the lead arrangement is connected directly to the NFT.
Abstract:
Apparatus for sensing data from a magnetic recording medium using a multi-sensor reader with different readback sensitivities. In accordance with some embodiments, a data transducing head has first and second read sensors. The first read sensor is optimized for reading data and the second read sensor is optimized to detect thermal asperity (TA) events.
Abstract:
An apparatus includes a writer, an arrangement comprising a plasmonic near-field transducer (NFT) adjacent the writer and comprising a material having a temperature coefficient of resistance (TCR), and a lead arrangement connected to the NFT arrangement. In some configurations, the NFT arrangement includes a heat sink, and the lead arrangement is connected to the heat sink. In other configurations, the lead arrangement is connected directly to the NFT.
Abstract:
A head transducer, configured to interact with a magnetic recording medium, includes a first sensor having a temperature coefficient of resistance (TCR) and configured to produce a first sensor signal, and a second sensor having a TCR and configured to produce a second sensor signal. One of the first and second sensors is situated at or near a close point of the head transducer in relation to the magnetic recording medium, and the other of the first and second sensors spaced away from the close point. Circuitry is configured to combine the first and second sensor signals and produce a combined sensor signal indicative of one or both of a change in head-medium spacing and head-medium contact. Each of the sensors may have a TCR with the same sign (positive or negative) or each sensor may have a TCR with a different sign.
Abstract:
A bond pad set includes at least one ground pad and at least one electrical bond pad configured to bias and send/receive signals. The bond pad set is electrically connected to a multiplicity of electrical components. At least one electrical bond pad of the bond pad set is shared between two or more of the electrical components.