Abstract:
The present invention provides an emissive region in organic light emitting devices having a combined emission from at least two emissive materials, a fluorescent blue emissive material and a phosphorescent emissive material. The emissive region may further comprise additional fluorescent or phosphorescent emissive materials. Preferably, the emissive region has three different emissive materials—a red emissive material, a green emissive material and a blue emissive material. Organic light emitting devices incorporating the emissive region provides a high color-stability of the light emission over a wide range of currents or luminances.
Abstract:
A display according to various embodiments is disclosed. The display has a frontplane including at least one OLED pixel having multiple subpixels connected to at least one power line. A backplane of the display includes at least one driver circuit connected to two or more of the multiple subpixels. Methods for powering the display are also disclosed.
Abstract:
A hybrid pixel arrangement for a full-color display is provided, which includes an inorganic LED in at least one sub-pixel, and an organic emissive stack in at least one other sub-pixel. In an embodiment, a first sub-pixel is configured to emit a first color, and includes an inorganic LED, a second sub-pixel is configured to emit a second color, and includes a first portion of a first organic emissive stack configured to emit an initial color different from the first color. A third sub-pixel is configured to emit a third color different from the initial color, and includes a second portion of the first organic emissive stack, and a first color altering layer disposed in a stack with the second portion of the first organic emissive stack.
Abstract:
Full-color pixel arrangements for use in devices such as OLED displays are provided, in which multiple sub-pixels are configured to emit different colors of light, with each sub-pixel having a different optical path length than some or all of the other sub-pixels within the pixel.
Abstract:
An OLED panel having a plurality of OLED circuit elements is provided. Each OLED circuit element may include a fuse or other component that can be ablated or otherwise opened to render the component essentially non-conductive. Each OLED circuit element may comprise a pixel that may include a first electrode, a second electrode, and an organic electroluminescent (EL) material disposed between the first and the second electrodes. Each of the OLED circuit elements may not be electrically connected in series with any other of the OLED circuit elements.
Abstract:
An image processing system includes an image sensor, an OLED display, a profile selection processor configured to select an output profile from among a plurality of pre-stored output profiles based at least in part on a digital representation of a target scene captured by the image sensor, and an image driver configured to drive the OLED display to display an image based on the selected output profile during a capture of an image of the target scene with the image sensor.
Abstract:
Arrangements of pixel components that allow for full-color devices, while using emissive devices that use blue color altering layers in conjunction with blue emissive regions, that emit at not more than two colors, and/or that use limited number of color altering layers, are provided. Devices disclosed herein also may be achieved using simplified fabrication techniques compared to conventional side-by-side arrangements, because fewer masking steps may be required.
Abstract:
Devices, components and fabrication methods are provided for improving the efficiency of OLED displays. An outcoupling component such as a microlens array (MLA) is attached to an OLED, with a relatively small distance between the MLA and the OLED. Cross-talk and back scattering are reduced by the use of colored lenses, focusing layers, and other methods.
Abstract:
OLED panels and techniques for fabricating OLED panels are provided. Multiple cuts may be made in an OLED panel to define a desired shape, as well as the location and shape of external electrical contacts. The panel may be encapsulated before or after being cut to a desired shape, allowing for greater flexibility and efficiency during manufacture.
Abstract:
Light emitting devices including sub-pixels having different numbers of emissive layers are provided. At least one sub-pixel of a first color may include a single emissive layer, and at least one sub-pixel of a second color may include multiple emissive layers disposed in a vertical stack. Light emitting devices in which different voltages are applied to each sub-pixel or group of sub-pixels are also provided. In some configurations, the voltage to be applied to a sub-pixel may be selected based upon the number of emissive layers in the sub-pixel.