Abstract:
According to an aspect of the present invention, each correlation block in a Global Navigation Satellite System (GNSS) receiver is designed to examine a certain number of consecutive samples of an input signal and a buffer is designed to store more than such number of samples. Due to such storing, each correlator may perform multiple correlations for the same set of received samples. According to another aspect, such searches may be performed without rotating a local code by controlling the specific samples provided as window samples. Thus, while performing Doppler searches, different frequencies can be searched using the same local code without rotation. While performing code phase searches, the window samples may start from different positions with the position determining the specific phase being searched.
Abstract:
In a code division multiplex transmitting and receiving system, the transmitting apparatus inserts a clock signal in the code division multiplex signal. The clock signal has a frequency equal to a null frequency in the frequency spectrum of the code division multiplex signal. The receiving apparatus extracts this frequency component from the received signal and recovers the clock signal, using an ordinary clock recovery device of the type designed to recover a clock signal from a bi-level signal. The recovered clock signal is used as a synchronizing signal in the processing of the received signal.
Abstract:
An optical communications network in which one optical line terminal is connected to multiple optical network units and in which code division multiplexing communication is carried out between the optical line terminal and the optical network units. The optical intensities of upstream optical signals transmitted from each optical network unit are made constant at the time of multiplexing by an optical directional coupler, and the optical intensity of a downstream optical signal received by an optical network unit and an upstream optical signal received by the optical line terminal is contained within a dynamic range. Each optical network unit is provided with a variable optical attenuator that is common for an upstream optical signal and a downstream optical signal. The upstream optical signal and the downstream optical signal are attenuated by an equal attenuation. Moreover, the optical line terminal controls the attenuation at the variable optical attenuator.
Abstract:
The invention provides a memory code generator. In one embodiment, the memory code generator comprises a code memory, a preparation buffer set, and a correlation buffer set. The code memory stores code data. The preparation buffer set retrieves a first code segment of the code data from the code memory, and shifts the first code segment to obtain a second code segment with a desired code phase required by the correlation buffer set. The correlation buffer set loads the second code segment from the preparation buffer set, and provides a correlation code for correlation according to the second code segment. The preparation buffer set prepares the second code segment corresponding to a subsequent correlation when the correlation buffer set is providing the correlation code for a current correlation according to the first code segment.
Abstract:
A positioning apparatus has an oscillator that generates a reproduced carrier wave which keeps track of a carrier wave of a satellite signal; a pseudo noise generator that generates a pseudo noise code unique to a satellite; a control section that controls a phase of the pseudo noise code in accordance with a change in the phase of the reproduced carrier wave, to thus control the pseudo noise generator so as to keep constant a difference between the phase of the pseudo noise code included in a satellite signal and the phase of the pseudo noise code; a timing generation section that generates a timing associated with a rise or fall of the pseudo noise code; a frequency generation section that generates at least one frequency signal; a sampling section that samples an amplitude of the satellite signal by means of a frequency signal; a cumulative addition section that cumulatively adds a signal sampled by the sampling section; and a phase difference computing section that computes a phase difference between the pseudo noise code included in the satellite signal and the pseudo noise code by use of a result of cumulative addition. The frequency generation section selects a frequency signal in synchronism with a timing generated by the timing generation section.
Abstract:
The energy potential of a receiver receiving signals from a navigation satellite is calculated according to an algorithm which is a function of an estimate of the mean and an estimate of the variance of a correlation signal. Improving the accuracy of measuring the energy potential may be achieved by improving the variance estimate. The variance estimate may be determined from measurements of the correlation signal over long time intervals during operation of the receiver. The variance estimate may also be determined during a calibration procedure, or by mathematical modeling of the receiver.
Abstract:
An apparatus for processing spread spectrum signals digitized at a predetermined sampling frequency. The apparatus includes an intermediate frequency signal preprocessing unit, a plurality of parallel block integrators. The intermediate frequency signal preprocessing unit is capable of generating pre-integration results based on an input signal and local reference signals at a predetermined rate. The pre-integration results produced by the intermediate frequency signal preprocessing unit are grouped into sets of pre-integration results. Each set of the pre-integration results contains a predetermined number of pre-integration results. The plurality of parallel block integrators is in communication with the intermediate frequency signal preprocessing unit. Each of the block integrators is capable of receiving, in succession, sets of a predetermined number of pre-integration results, and for each set of predetermined number of pre-integration results, each of the block integrators is capable of performing a plurality of partial correlations based on the set of the predetermined number of pre-integration results and a plurality of shifted segments of a pseudorandom noise code until a next set of pre-integration results are received by the block integrator.
Abstract:
Cardiac stimulation device and wireless communication system, without magnetic detection or magnetic control of the heart pacemaker parameters, having leads for carrying stimulating pulses to and or from one or more electrodes located in a heart and a pulse generator configured to generate stimulation pulses. In certain embodiments and environments the heart pacemaker could operate in an emergency room, even during Magnetic Resonance Imaging (MRI) diagnostic studies.A processor for connection of the stimulating pulses to and/or from one or more spread spectrum transmitter-receiver (T/R) circuits and/or from a signal processing network for receiving said stimulation pulses and for providing cross-correlated in-phase and quadrature-phase baseband signals. One or more modulators and demodulators for transmission and/or reception of one or more spread spectrum and/or cross-correlated signals.
Abstract:
A method, device and system for determining a receiver location using weak signal satellite transmissions. The invention involves a sequence of exchanges between an aiding source and a receiver that serve to provide aiding information to the receiver so that the receiver's location may be determined in the presence of weak satellite transmissions. With the aiding information, the novel receiver detects, acquires and tracks weak satellite signals and computes position solutions from calculated pseudo ranges despite the inability to extract time synchronization date f, 'n the weak satellite signals. The invention includes as features, methods and apparatus for the calibration of a local oscillator, the cancellation of cross correlations, a Doppler location scheme, an ensemble averaging scheme, the calculation of almanac aiding from a table of orbit coefficients, absolute time determination, and a modified search engine.
Abstract:
A GPS receiver acquires carrier frequency and Gold code phase using short segments of a received GPS signal. In one embodiment, a 1-ms segment of the GPS signal is transformed to the frequency domain. This is multiplied by a frequency representation of the Gold code. The resulting product is converted to the time domain, and a peak is detected. The location of the peak corresponds to the code phase. If no peak is located, the carrier frequency is changed. Full- and half-bin steps in carrier frequency are considered. Processing gain is achieved by using longer segments of the input signal, for example 4 or 16 ms and integrating 1-ms segments. Considerations are provided for compensating for the effects of a transition, should it occur in the short segment of the GPS signal being processed. Integrations can be performed using non-coherent and coherent techniques. Adjustments are made for non-integral millisecond segment lengths.