Abstract:
Method and device for processing a communication network A method and a device for processing a communication network are provided, wherein (a) a first performance parameter of the communication network is determined; (b) a third performance parameter is determined based on the first performance parameter and a second performance parameter, which second performance parameter was previously determined, wherein the second performance parameter comprises a forecast of an expected network performance over time until the end of the scheduled lifetime of the communication network; and (c) the communication network is processed based on the third performance parameter. Furthermore, an according computer program product is suggested.
Abstract:
An optical amplifier with improved transient performance has two amplifier stages and a dispersion compensating fiber inserted between the amplifier stages. A control unit generates a pump control signal for a common pump source pumping both amplifier stages via a power splitter. The pump control signal has a feedforward component with a delayed reaction. A feedforward delay time is adjusted to minimize gain variations resulting from input power drops. In a preferred embodiment, the splitting ratio of the power splitter is adjustable to achieve, for instance, either optimum steady-state performance or optimum transient performance.
Abstract:
A method and a device are provided for phase recovery of at least two channels comprising the steps of (i) a phase is estimated for each channel; (ii) the phase estimated of each channel is superimposed by a coupling factor with at least one other phase estimated. Further, a communication system is suggested comprising such a device.
Abstract:
Bidirectional data signals are exchanged between a central unit and a plurality of network terminals. The optical carrier frequencies of the downstream and upstream signals are chosen so that reflections do not interfere with the selected signal at the optical network unit and not with the received upstream signals at the central unit. The optical network units select their associated downstream signal and generate an associated upstream signal.
Abstract:
Disclosed herein is a transponder comprising a transmitter and a receiver. The transponder further comprises a receiver input amplifier, a bypass line, and a control unit configured for determining the performance of the transponder in relation to an OSNR related parameter, by controlling the transponder to generate a noise signal to be received by the receiver. The receiver input amplifier is operated to thereby cause ASE in the receiver input amplifier to facilitate the determination. A test signal is generated at the transmitter Said noise signal and said test signal, and/or one or more respective replicas thereof, are superimposed to form a combined signal to be received by said receiver to further facilitate determination of said performance related parameter based on said combined signal, wherein for generating said combined signal, said test signal is fed from the transmitter to the receiver by means of said bypass line.
Abstract:
A method for assigning spectral resources comprises assigning spectral resources for a plurality of communication channels. The spectral resources for the plurality of communication channels comprise excess resources that are at least tentatively kept unoccupied. The excess resources of a plurality of communication channels are assigned to be spectrally contiguous.
Abstract:
Disclosed herein is a decoder 10 for decoding a family of L rate compatible parity check codes, said family of parity check codes comprising a first code that can be represented by a bipartite graph having variable nodes, check nodes, and edges, and L−1 codes of increasingly lower code rate, among which the i-th code can be represented by a bipartite graph corresponding to the bipartite graph representing the (i−1)-th code, to which an equal number of ni variable nodes and check nodes are added, wherein the added check nodes are connected via edges with selected ones of the variable nodes included in said i-th code, while the added variable nodes are connected via edges with selected added check nodes only. The decoder comprising L check node processing units 14, among which the i-th check node processing unit processes only the check nodes added in the i-th code over the (i−1)-th code, wherein said L check node processing units 14 are configured to operate in parallel.
Abstract:
The disclosed apparatus, system and method of the present invention provides improved solutions related to the interconnection of communication cable connectors and communication port receptacles, and more generally, for improved handling and management of communication cable connectors and communication ports. Certain example embodiments suitable for an optical communication application, for example, provide for improved laser safety at the location of an optical communication connector and/or an optical communication port. Moreover, certain example embodiments of the present invention additionally or alternatively otherwise provide for improved communication port, module, device, and/or system handling, administration and/or other management.
Abstract:
A phase modulation device is provided that comprises a retardation device and a control device. The retardation device is characterized by first and second polarization eigenstates SOPf and SOPs. Light polarized according to the second polarization eigenstate SOPs acquires, upon passing through said retardation device, a delay with regard to light polarized according to the first polarization eigenstate SOPf, which delay corresponds to λ/2±30%, preferably λ/2±20% and most preferably λ/2±10%. The retardation device is arranged to receive input light having a polarization state SOPf; that defines an angle with respect to one of the first and second polarization eigenstates SOPf, SOPs within a predetermined angle range and to emit output light. The control device is configured to control at least one of a change of the angle between the polarization state SOPi; of the input light and the respective polarization eigenstate SOPf, SOPs by less than 0.1*π, preferably less than 0.05*π and most preferably less than 0.02*π; and a change of the amount of said delay upon passing through said retardation device by less than 0.3*λ, preferably less than 0.2*λ and most preferably less than 0.1*λ, such that a phase shift of π±30%, preferably π±20% and most preferably π±10% on the output light is obtained.
Abstract:
A Raman pumping arrangement for amplifying a data optical signal (40) has a Raman pump (12) for generating a Raman pump signal (44;45), an optical supervisory channel receiver (14) for receiving an optical supervisory channel signal (42) an amplification fiber (15) arranged such that the data optical signal (40), the optical supervisory channel signal (42), and the Raman pump signal (44;45) are transmitted therethrough; and a control unit (13) configured for controlling the operation of the Raman pump (12); wherein the control unit (13) is configured for setting the Raman pump (12) in an operation mode or a start-up mode; wherein in the operation mode, the Raman pump (12) provides an operation pumping power (120), and wherein in the start-up mode, the Raman pump (12) provides a start-up pumping power (122).