Abstract:
A cabinet frame enclosure is provided having a first side wall, a second side wall, a first opening and a second opening each in combination defining an interior space for accommodating a plurality of equipment, the equipment being removable through the first opening. A plurality of functional modules are provided such as: an asset tracking module for detecting the presence or absence of the equipment from the interior space of the cabinet frame enclosure, the asset tracking module disposed in the first side wall adjacent the first opening; an access control module for providing electronic locking and access control to the interior space of the cabinet frame enclosure; an environmental management module for monitoring and controlling environmental conditions within the interior space of the cabinet frame enclosure; a power management module for monitoring and controlling power distribution to equipment located in the interior space of the cabinet frame enclosure, the power management module disposed in one of the first side wall or second side wall and adjacent the second opening; and a cabinet control module (CCM) for providing consolidated connectivity to the plurality of functional modules, wherein the CCM presents a single network connection for managing the equipment located in the cabinet frame enclosure.
Abstract:
The invention provides for a shell having four sides including a front side and a front side having contact points to simulate a host component where the number of contact points and spacing between the contact points on the front side of the shell simulate the number and spacing of receptacles located on the host component so that the shell may be temporarily populated with accessories and the accessories capable of being serially removed and serially attached to the receptacles of the host component. The shell may be carried in a shipment container along with the accessories for shipping to the location of the host component. The accessories may include cable harnesses and have fiber optic connectors temporarily mounted to the component simulation shell during shipping and upon arrival at the host component, the connectors may be removed in a one-to-one matching sequence between the component simulation shell and the host component where the connectors are finally mated.
Abstract:
A cabinet frame enclosure is provided having a first side wall, a second side wall, a first opening and a second opening each in combination defining an interior space for accommodating a plurality of equipment, the equipment being removable through the first opening. A plurality of functional modules are provided such as: an asset tracking module for detecting the presence or absence of the equipment from the interior space of the cabinet frame enclosure, the asset tracking module disposed in the first side wall adjacent the first opening; an access control module for providing electronic locking and access control to the interior space of the cabinet frame enclosure; an environmental management module for monitoring and controlling environmental conditions within the interior space of the cabinet frame enclosure; a power management module for monitoring and controlling power distribution to equipment located in the interior space of the cabinet frame enclosure, the power management module disposed in one of the first side wall or second side wall and adjacent the second opening; and a cabinet control module (CCM) for providing consolidated connectivity to the plurality of functional modules, wherein the CCM presents a single network connection for managing the equipment located in the cabinet frame enclosure.
Abstract:
A clockspring including a housing, a hub, and flexible printed wiring. The flexible printed wiring electrically connecting the hub to the housing. The hub mounted in the housing. The hub being able to rotate relative to the housing. The flexible printed wiring able to be affixed with components such as resistors, capacitors, inductors, and integrated circuits.
Abstract:
Methods and apparatus for a dual reacting, single load sensing element coupled to a hitch receiver are disclosed herein. An example computer readable medium comprising instructions, which when executed, cause one or more processors to determine a location of a hitch ball of a hitch of a vehicle, determine a load condition of the hitch based on the location and data received from a sensor of a first pin of the hitch, the hitch including a second pin, the first pin to react loads in a first direction and a second direction, the second pin to react loads in the first direction and in response to the load condition satisfying an alert threshold, alert a user of the load condition.
Abstract:
A light emitting diode (LED) circuit is disclosed having an LED having a plurality of current paths. A controller may be included for controlling the LEDs. The LED is connected to a first transistor and a first current sink to drive a constant current through the LED through a first current path. At least one cloning transistor can establish a parallel current path through the LED and parallel to the first current path and is connected such that the constant current in the first current sink is duplicated in the parallel current path.
Abstract:
A luminous flux collector comprises a housing, a wide-angle light capturing device and an optical collimating device, arranged around a longitudinal axis. The housing surrounds and protects the wide-angle light capturing device and the optical collimating device. The housing also provides structural support to hold the other elements in position. The wide-angle light capturing device can include a receptacle for receiving a light source, and the wide-angle light capturing device collects light with a spread angle of at least 120 degrees from the light source. The wide-angle light capturing device is disposed within a proximal end of the housing along the longitudinal axis. The optical collimating device extends from the wide-angle light capturing device to a distal end of the housing along the longitudinal axis.
Abstract:
A luminous flux collector comprises a housing, a wide-angle light capturing device and an optical collimating device, arranged around a longitudinal axis. The housing surrounds and protects the wide-angle light capturing device and the optical collimating device. The housing also provides structural support to hold the other elements in position. The wide-angle light capturing device can include a receptacle for receiving a light source, and the wide-angle light capturing device collects light with a spread angle of at least 120 degrees from the light source. The wide-angle light capturing device is disposed within a proximal end of the housing along the longitudinal axis. The optical collimating device extends from the wide-angle light capturing device to a distal end of the housing along the longitudinal axis.
Abstract:
An integrated lighting insert is provided for multi-function automotive vehicle lighting that has minimal space requirements and provides different lighting functions in a single device with an electronic control module that can easily interface with vehicle electronics. The insert a housing and a plurality of light transmission portions, a plurality of light sources integrated into the housing, each one configured for a different predetermined function associated with a particular use of, a condition of, or a state of the automobile. An electrical circuit is used along with a communications bus and individual controller circuits associated with the light sources for controlling the light functions.