Abstract:
Improving fingerprint image measurement despite damage to the stratum corneum. Determining whether a fingerprint image is adequate for matching with a database. If not, re-measure those image portions that are inadequate (overexposed or underexposed), such re-measuring a minimal selection of image portions. An amount of time or power to re-measure is minimized. Improving fingerprint image data collection despite fixed pattern noise like saturated bars in blocks of picture elements. Determining a histogram of grayscale values, removing fixed pattern noise, and expanding real histogram values to obtain more bits of precision.
Abstract:
An electronic device may include a finger biometric sensor that includes an array of electric field sensing pixels and image data output circuitry coupled thereto and capable of processing the image data from each of sub-arrays of the array of electric field sensing pixels. The electronic device may also include a dielectric layer over the array of electric field sensing pixels and causing electric field diffusion so that the image data output circuitry generates image data corresponding to a blurred finger image. The electronic device also includes deblurring circuitry coupled to the image data output circuitry and capable of processing the image data from each of the plurality of sub-arrays of the array of electric field sensing pixels to produce processed image data representative of a deblurred finger image.
Abstract:
An electronic device includes a biometric sensing device connected to a processing channel that includes at least one amplifier having a gain. One or more processing devices is operatively connected to the biometric sensing device and adapted to compensate for signal fixed pattern noise in signals received from the processing channel. The signal fixed pattern noise can include signal measurement variation noise and gain variation noise. The biometric sensing device captures a new image or data, and at least one processing device compensates for the signal fixed pattern noise in the newly captured image or data.
Abstract:
A finger biometric sensing device may include drive circuitry capable of generating a drive signal and an array of finger biometric sensing pixel electrodes cooperating with the drive circuitry and capable of generating a detected signal based upon placement of a finger adjacent the array of finger biometric sensing pixel electrodes. The detected signal may include a relatively large drive signal component and a relatively small sense signal component superimposed thereon. The finger biometric sensing device may also include a gain stage coupled to the array of finger biometric sensing pixel electrodes, and drive signal nulling circuitry coupled to the gain stage capable of reducing the relatively large drive signal component from the detected signal.
Abstract:
A biometric finger sensor may include an array of biometric finger sensing pixels and an array shielding electrode outside the array of biometric finger sensing pixels. The biometric finger sensor may further include a finger drive electrode outside the array shielding electrode. Finger drive circuitry may generate a finger drive signal for the finger drive electrode and generate a compensating finger drive signal for the shielding electrode.
Abstract:
An electronic device may include a finger biometric sensor that includes an array of electric field sensing pixels and image data output circuitry coupled thereto and capable of processing the image data from each of sub-arrays of the array of electric field sensing pixels. The electronic device may also include a dielectric layer over the array of electric field sensing pixels and causing electric field diffusion so that the image data output circuitry generates image data corresponding to a blurred finger image. The electronic device also includes deblurring circuitry coupled to the image data output circuitry and capable of processing the image data from each of the plurality of sub-arrays of the array of electric field sensing pixels to produce processed image data representative of a deblurred finger image.
Abstract:
An electronic device may include a finger biometric sensor that may include an array of electric field sensing pixels and image data output circuitry coupled thereto. The electronic device may also include a dielectric layer over the array of electric field sensing pixels and causing electric field diffusion so that the image data output circuitry generates image data corresponding to a blurred finger image. The electronic device may also include deblurring circuitry coupled to the image data output circuitry and capable of processing the image data to produce processed image data representative of a deblurred finger image.
Abstract:
A fingerprint sensor is incorporated in a display stack in an electronic device. A single fingerprint can be captured at one time at a single pre-defined fixed location on a display. Alternatively, a single fingerprint can be acquired at one time at any location on a display. Alternatively, multiple touches on the display can be acquired substantially simultaneously where only one fingerprint is captured at a time or where all of the fingerprints are acquired at the same time. The fingerprint sensor can be implemented as an integrated circuit connected to a bottom surface of a cover sheet, near the bottom surface of the cover sheet, or connected to a top surface of a display. Alternatively, the fingerprint sensor can be implemented as a full panel fingerprint sensor.
Abstract:
Improving fingerprint image measurement despite damage to the stratum corneum. Determining whether a fingerprint image is adequate for matching with a database. If not, re-measure those image portions that are inadequate (overexposed or underexposed), such re-measuring a minimal selection of image portions. An amount of time or power to re-measure is minimized. Improving fingerprint image data collection despite fixed pattern noise like saturated bars in blocks of picture elements. Determining a histogram of grayscale values, removing fixed pattern noise, and expanding real histogram values to obtain more bits of precision.
Abstract:
A biometric sensor device, such as a fingerprint sensor, comprises a substrate to which is mounted a die on which is formed a sensor array and at least one conductive bezel. The die and the bezel are encased in a unitary encapsulation structure to protect those elements from mechanical, electrical, and environmental damage, yet with a portion of the sensor array and the bezel exposed or at most thinly covered by the encapsulation or other coating material structure.