摘要:
A method and systems for reducing the complexity of a parity checker are described herein. In at least some preferred embodiments, a parity-check decoder includes column store units and one or more alignment units, which are coupled to the column store units. The column store units outnumber the alignments units.
摘要:
In some embodiments, a device includes a multiple-input multiple-output (“MIMO”) decoder module coupled to a first log-likelihood-ratio (“LLR”) computing unit. The decoder module includes at least one processing unit and at least one sorting unit. The decoder module preferably uses a K-best breadth-first search method to decode data from MIMO sources. In some embodiments, a method includes receiving data representing a vector of receive signal samples detected by multiple receive transceivers. The method further includes performing a K-best breadth-first search on the data to obtain an estimated constellation point. The method further includes providing a user data stream based at least in part on the estimated constellation point.
摘要:
In MIMO wireless communications employing LMMSE receiver, the symbols transmitted through a transmit antenna are estimated at the receiver in the presence of interference consisting of two main components: one due to the additive noise and the other due to (interfering) symbols transmitted via the remaining antennas. This has been shown to hamper the performance of a communication system resulting in incorrect symbol decisions, particularly at low SNR. IMMSE has been devised as a solution to cope with this problem; In IMMSE processing, the symbols sent via each transmit antenna are decoded iteratively. In each stage of processing, the received signal is updated by removing the contribution of symbols detected in the previous iterations. In principle, this reduces the additive interference in which the desired symbols are embedded in. Therefore, the interference level should reduce monotonically as one goes down in processing order. In a noisy environment, however, any incorrect decision made on a symbol in an iteration leaves its contribution in the updated received signal available for processing in the following iterations. Fortunately, if the level of interference is estimated and the soft bits are scaled appropriately by the estimated interference power, the performance of IMMSE receiver can be greatly improved. Preferred embodiments estimate the interference by computing the probability of error in decoding the symbols of the previous stage(s). The computation of decision error probability depends on the constellation size of transmitted symbols and introduces very little processing overhead.
摘要:
A resynchronization method for use in a data communication system having a first device configured to transmit data at a symbol rate to a second device. The second device includes a Reed Solomon (RS) decoder having a RS lock indicator and a Moving Picture Experts Group (MPEG) Protocol Interface (MPI) having a MPI lock indicator, wherein the RS and MPI lock indicators are monitored. Four different states, defined by the values of the RS and MPI lock indicators, determine whether the data communication system will wait for the RS decoded and the MPI hardware block to resynchronize, whether an intermediate-subset of the channel acquisition algorithm is performed or whether the entire channel acquisition algorithm is performed. The method of resynchronization described herein recovers synchronization within a predetermined time without the layers above the physical link layer having knowledge.
摘要:
In a wireless MIMO system with interference cancellation, compensate for decision errors in the cancelled symbols by adjustments to the scaling of the soft estimates with additive interference-proportional to estimates of the decision error probability.
摘要:
For use with a multiple-input, multiple-output (MIMO) transmitter, a signal field controller, a method of controlling signal fields and a MIMO transmitter incorporating the controller or the method. In one embodiment, the controller includes: (1) a primary signal field mode indicator configured to cause a primary signal field to indicate a presence of a supplemental signal field and provide the primary signal field to the MIMO transmitter for transmission thereby and (2) a supplemental signal field generator coupled to the primary signal field mode indicator and configured to provide a supplemental signal field to the MIMO transmitter for further transmission thereby only when the primary signal field indicates the presence.
摘要:
In MIMO wireless communications employing LMMSE receiver, the symbols transmitted through a transmit antenna are estimated at the receiver in the presence of interference consisting of two main components: one due to the additive noise and the other due to (interfering) symbols transmitted via the remaining antennas. This has been shown to hamper the performance of a communication system resulting in incorrect symbol decisions, particularly at low SNR. IMMSE has been devised as a solution to cope with this problem; In IMMSE processing, the symbols sent via each transmit antenna are decoded iteratively. In each stage of processing, the received signal is updated by removing the contribution of symbols detected in the previous iterations. In principle, this reduces the additive interference in which the desired symbols are embedded in. Therefore, the interference level should reduce monotonically as one goes down in processing order. In a noisy environment, however, any incorrect decision made on a symbol in an iteration leaves its contribution in the updated received signal available for processing in the following iterations. Fortunately, if the level of interference is estimated and the soft bits are scaled appropriately by the estimated interference power, the performance of IMMSE receiver can be greatly improved. Preferred embodiments estimate the interference by computing the probability of error in decoding the symbols of the previous stage(s). The computation of decision error probability depends on the constellation size of transmitted symbols and introduces very little processing overhead.
摘要:
The present invention provides a folded low-complexity (FLC) pipeline. In one embodiment, the FLC pipeline includes a dot product unit chain configured to employ only addition and multiplication operations to compute intermediate numerators and denominators from a received signal matrix, a channel gain matrix and a noise matrix. Additionally, FLC pipeline also includes a divider stage configured to terminate the dot product unit chain by computing an unscaled quotient and a scale factor from ultimate ones of the intermediate numerators and denominators.
摘要:
In at least some embodiments, a system may comprise one or more devices configured to communicate according to a first protocol that uses a data frame comprising a header field and a data field and one or more devices configured to communicate according to a second protocol that uses a data frame comprising a header field, a header extension, and a data field. The data frame used by the second protocol may comprise fictitious information for interpretation by the one or more devices configured according to the first protocol. In accordance with some embodiments of the invention, the devices configured according to the first protocol may use the fictitious information to determine a data transmission duration of data packets sent by devices configured according to the second protocol, even though the data packets may be sent according to parameters that are not supported by the first protocol.
摘要:
For use with a multiple-input, multiple-output (MIMO) transmitter, a signal field controller, a method of controlling signal fields and a MIMO transmitter incorporating the controller or the method. In one embodiment, the controller includes: (1) a primary signal field mode indicator configured to cause a primary signal field to indicate a presence of a supplemental signal field and provide the primary signal field to the MIMO transmitter for transmission thereby and (2) a supplemental signal field generator coupled to the primary signal field mode indicator and configured to provide a supplemental signal field to the MIMO transmitter for further transmission thereby only when the primary signal field indicates the presence.