Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a cold-formed glass substrate removably disposed on the curved surface, wherein the curved surface and the glass substrate each have a radius of curvature within 10% of one another. The base may include a center console, a dashboard, an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, or a steering wheel. In one or more embodiments, the curved surface includes a display, and the glass substrate is disposed at least partially over the display. Methods for forming such systems are also disclosed.
Abstract:
A carbon-based electrode includes activated carbon, carbon black, and a binder. The binder is fluoropolymer having a molecular weight of at least 500,000 and a fluorine content of 40 to 70 wt. %. A method of forming the carbon-based electrode includes providing a binder-less conductive carbon-coated current collector, pre-treating the carbon coating with a sodium napthalenide-based solution, and depositing onto the treated carbon coating a slurry containing activated carbon, carbon black and binder.
Abstract:
A carbon-based electrode includes activated carbon, carbon black, and a binder. The binder is fluoropolymer having a molecular weight of at least 500,000 and a fluorine content of 40 to 70 wt. %. A method of forming the carbon-based electrode includes providing a binder-less conductive carbon-coated current collector, pre-treating the carbon coating with a sodium napthalenide-based solution, and depositing onto the treated carbon coating a slurry containing activated carbon, carbon black and binder.
Abstract:
An electrical double-layer capacitor for high-voltage operation at high operating temperatures, includes a housing, carbon positioned in the housing, and electrolyte positioned in the housing. The carbon is activated and includes pores, where the pores in part provide the carbon with a high surface area of at least 500 m2/g. At an operating temperature of the electrical double-layer capacitor of 85° C. at sea level the electrical double-layer capacitor has a voltage output of at least 2.6 V.
Abstract:
An energy storage device such as an electric double layer capacitor has positive and negative electrodes, each including a blend of respective first and second activated carbon materials having distinct pore size distributions. The blend (mixture) of first and second activated carbon materials may be equal in each electrode.
Abstract:
Carbon-based electrodes such as for incorporation into ultracapacitors or other high power density energy storage devices, include activated carbon, carbon black, binder and at least one molecular sieve material. The molecular sieve component can adsorb and trap water, which can facilitate the use of the device at higher voltage, such as greater than 3V. The molecular sieve material may be incorporated into the carbon-based electrodes or formed as a layer over a carbon-based electrode surface.
Abstract:
A method for producing activated carbon includes heating a coconut shell carbon precursor at a carbonization temperature effective to form a carbon material, and reacting the carbon material with CO2 at an activation temperature effective to form the activated carbon. The resulting activated carbon can be incorporated into a carbon-based electrode of an EDLC. Such EDLC can exhibit a potential window and thus an attendant operating voltage of greater than 3V.