Fuel injector heat exchanger assembly

    公开(公告)号:US11029029B2

    公开(公告)日:2021-06-08

    申请号:US16238979

    申请日:2019-01-03

    Abstract: A fuel injector heat exchanger assembly is provided, in which the fuel injector assembly includes a body defining an outer surface and an inner surface. The body includes a plurality of walls in concentric arrangement. The plurality of walls defines a plurality of passages including a first passage surrounded by a second passage, and a third passage surrounding the second passage. Each passage is fluidly segregated from one another by the plurality of walls. A first conduit wall is defined through the body from the outer surface. The first conduit wall defines a first conduit in fluid communication with the second passage. The first conduit wall fluidly segregates the first conduit from the third passage. The first conduit is configured to admit a flow of fluid from outside the fuel injector into the second passage.

    Annular concentric fuel nozzle assembly with annular depression and radial inlet ports

    公开(公告)号:US10935245B2

    公开(公告)日:2021-03-02

    申请号:US16196383

    申请日:2018-11-20

    Abstract: A fuel nozzle for a gas turbine engine is generally provided. The fuel nozzle includes an outer sleeve extended circumferentially around a fuel nozzle centerline and extended along a longitudinal direction substantially co-directional to the fuel nozzle centerline. The outer sleeve defines a plurality of first radially oriented air inlet ports through the outer sleeve in circumferential arrangement relative to the fuel nozzle centerline. The fuel nozzle further includes a centerbody positioned radially inward of the outer sleeve. The centerbody is extended along the longitudinal direction substantially co-directional to the fuel nozzle centerline and wherein the centerbody is concentric to the fuel nozzle centerline and the outer sleeve. The centerbody defines a plurality of second radially oriented air inlet ports through the centerbody in circumferential arrangement relative to the fuel nozzle centerline. The centerbody further defines an annular centerbody groove or depression relative to the fuel nozzle centerline at a downstream end directly adjacent to a combustion chamber. The fuel nozzle further includes an inner sleeve extended circumferentially around the fuel nozzle centerline and extended along the longitudinal direction substantially co-directional to the fuel nozzle centerline. The inner sleeve is positioned radially between the outer sleeve and the centerbody. The inner sleeve further defines an annular inner sleeve depression relative to the fuel nozzle centerline at the downstream end directly adjacent to the combustion chamber. The outer sleeve and the inner sleeve together define a first fuel air mixing passage radially therebetween and extended substantially along the longitudinal direction in direct fluid communication with the combustion chamber. The inner sleeve and the centerbody together further define a second fuel air mixing passage radially therebetween and extended substantially along the longitudinal direction in direct fluid communication with the combustion chamber.

    COMBUSTOR LINER FOR A GAS TURBINE ENGINE AND AN ASSOCIATED METHOD THEREOF

    公开(公告)号:US20210003281A1

    公开(公告)日:2021-01-07

    申请号:US17029587

    申请日:2020-09-23

    Abstract: A method for regulating jet wakes in a combustor including: directing compressed fluid into a passageway between a casing and a combustor liner; directing a combustion gas along a combustion zone; discharging a first portion of compressed fluid from the passageway into the combustion zone via a first through-hole which is disposed on a section of a combustor panel in a first circumferential row; and discharging a second portion of the compressed fluid from the passageway into the combustion zone via second through-holes, wherein the second through-holes are disposed on a section of the panel, spaced apart axially and circumferentially, and adjacent to the first through-hole, wherein the second through-holes include a first set of through-holes and a second set of through-holes, the first set of through-holes in a second row and the second set of through-holes in a third row, wherein the second and third rows extend circumferentially.

    Annular Concentric Fuel Nozzle Assembly
    84.
    发明申请

    公开(公告)号:US20200158343A1

    公开(公告)日:2020-05-21

    申请号:US16196383

    申请日:2018-11-20

    Abstract: A fuel nozzle for a gas turbine engine is generally provided. The fuel nozzle includes an outer sleeve extended circumferentially around a fuel nozzle centerline and extended along a longitudinal direction substantially co-directional to the fuel nozzle centerline. The outer sleeve defines a plurality of first radially oriented air inlet ports through the outer sleeve in circumferential arrangement relative to the fuel nozzle centerline. The fuel nozzle further includes a centerbody positioned radially inward of the outer sleeve. The centerbody is extended along the longitudinal direction substantially co-directional to the fuel nozzle centerline and wherein the centerbody is concentric to the fuel nozzle centerline and the outer sleeve. The centerbody defines a plurality of second radially oriented air inlet ports through the centerbody in circumferential arrangement relative to the fuel nozzle centerline. The centerbody further defines an annular centerbody groove or depression relative to the fuel nozzle centerline at a downstream end directly adjacent to a combustion chamber. The fuel nozzle further includes an inner sleeve extended circumferentially around the fuel nozzle centerline and extended along the longitudinal direction substantially co-directional to the fuel nozzle centerline. The inner sleeve is positioned radially between the outer sleeve and the centerbody. The inner sleeve further defines an annular inner sleeve depression relative to the fuel nozzle centerline at the downstream end directly adjacent to the combustion chamber. The outer sleeve and the inner sleeve together define a first fuel air mixing passage radially therebetween and extended substantially along the longitudinal direction in direct fluid communication with the combustion chamber. The inner sleeve and the centerbody together further define a second fuel air mixing passage radially therebetween and extended substantially along the longitudinal direction in direct fluid communication with the combustion chamber.

    TRAPPED VORTEX COMBUSTOR AND METHOD FOR OPERATING THE SAME

    公开(公告)号:US20190086092A1

    公开(公告)日:2019-03-21

    申请号:US15709958

    申请日:2017-09-20

    Abstract: Various embodiments include a trapped vortex combustor and a method for operating trapped vortex combustor. In one embodiment, the trapped vortex combustor comprises a trapped vortex combustion zone and at least one secondary combustion zone disposed downstream of the trapped vortex combustion zone. The trapped vortex combustion zone is operable to receive and combust a first fuel and a first air and produce a first combustion product flowing toroidally therein. The at least one secondary combustion zone is operable to receive and combust the first combustion product and at least one second injection consisting of fuel and/or air and produce at least one second combustion product therein. The combustor may reduce the residence time of the highest temperature combustion products and achieve the lower NOx emission.

    FUEL NOZZLE FOR A GAS TURBINE ENGINE
    86.
    发明申请

    公开(公告)号:US20190024899A1

    公开(公告)日:2019-01-24

    申请号:US15656194

    申请日:2017-07-21

    Abstract: The present disclosure is directed to a fuel nozzle assembly for a gas turbine engine. The fuel nozzle assembly includes a centerbody extended along a nozzle centerline axis and generally concentric thereto and an outer sleeve surrounding the centerbody and extended along the nozzle centerline axis and generally concentric thereto. The centerbody defines an outer wall extended at least partially along the nozzle centerline axis in which the centerbody defines a first fuel passage therewithin and one or more first fuel exit openings through the outer wall. Each first fuel exit opening is discrete from another along the outer wall. The outer sleeve and centerbody together define a first air passage therebetween. The first fuel passage and the first fuel exit opening are in fluid communication with the first air passage. The fuel nozzle assembly provides a first flow of fuel through the first fuel passage and first exit opening and a first flow of air through the first air passage, the first flow of fuel defines a jet in crossflow mixing with the first flow of air.

    Fuel Nozzle for a Gas Turbine Engine
    87.
    发明申请

    公开(公告)号:US20180266692A1

    公开(公告)日:2018-09-20

    申请号:US15459309

    申请日:2017-03-15

    CPC classification number: F23R3/343 F23R3/28 F23R2900/00004

    Abstract: A fuel nozzle for a gas turbine engine includes an outer body defining a plurality of openings in an exterior surface. The fuel nozzle also includes a main injection ring disposed at least partially inside the outer body. The main injection ring includes a plurality of fuel posts extending into or through the plurality of openings of the outer body. The plurality of fuel posts include an LP fuel post defining a main fuel orifice, a top surface, and a scarf, the scarf of the LP fuel post extending in the top surface in a first direction relative to the centerline axis away from the main fuel orifice. The plurality of fuel posts also include an HP fuel post defining a main fuel orifice, a top surface, and a scarf, the scarf of the HP fuel post extending in the top surface fin a second direction relative to the centerline axis away from the main fuel orifice, the second direction being at least ninety degrees different than the first direction.

Patent Agency Ranking