Abstract:
A retractable cover for architectural openings having collapsible vanes includes a support structure in the form of a sheet of material, monofilaments, tapes, ribbons, cords, or the like, supporting an upper edge of a plurality of vertically spaced, horizontally extending vanes with the lower edges of the vanes in most embodiments of the invention being connected to operating elements adapted to raise the lower edges of each vane toward the upper edges to define openings or gaps between the vanes through which vision and light can pass in an open condition of the covering. Variations of the covering do not require movement of a lower edge of a vane relative to an upper edge but simply movement of some vanes relative to other vanes. The vanes can be made of materials having different flexibilities and where more rigid materials are used, creased fold lines can be established for desired operability.
Abstract:
An apparatus and associated method for manufacturing a window covering for an architectural opening. The apparatus includes a support structure handling assembly, an operating element handling assembly, and a vane handling assembly. The handling assemblies process the respective materials to an assembly station to attach one portion of a vane to the operating elements, and another portion of the vane to the support structure, allowing movement of one portion of the vane relative to other portion of the vane.
Abstract:
A retractable cover for architectural openings having collapsible vanes includes a support structure in the form of a sheet of material, monofilaments, tapes, ribbons, cords, or the like, supporting an upper edge of a plurality of vertically spaced, horizontally extending vanes with the lower edges of the vanes in most embodiments of the invention being connected to operating elements adapted to raise the lower edges of each vane toward the upper edges to define openings or gaps between the vanes through which vision and light can pass in an open condition of the covering. Variations of the covering do not require movement of a lower edge of a vane relative to an upper edge but simply movement of some vanes relative to other vanes. The vanes can be made of materials having different flexibilities and where more rigid materials are used, creased fold lines can be established for desired operability.
Abstract:
Methods and apparatus to control an architectural opening covering assembly are disclosed herein. An example method disclosed herein includes determining a position of a covering of an architectural opening covering assembly. The example method further includes determining a speed at which the covering is to move via a motor based on the position and a period of time. The example method also includes operating a motor to move the covering at the speed.
Abstract:
In one aspect, a slatted blind includes a headrail, a bottom rail, and a plurality of horizontally oriented slats configured to be supported between the headrail and the bottom rail via one or more ladder tape assemblies. Each ladder tape assembly includes a first ladder rail, a second ladder rail, and a plurality of ladder steps extending between the first and second ladder rails, with each ladder step being configured to support a respective slat of the plurality of slats of the slatted blind. Additionally, each ladder tape assembly incorporates or includes shroud-like features and/or structure for retaining or limiting access to one or more lift cords of the blind.
Abstract:
A covering for an architectural feature having generally horizontal vane elements extending between generally inner and outer vertical support members that can adjust and control the amount and quality of light transmitted through the covering is described. In one embodiment, the covering has elongate tapes as vertical support members that have a width substantially less than the length of the vane elements, and adjacent inner and adjacent outer elongate tapes are separated by a distance. In one embodiment, the vane elements are multi-layered, cellular vanes. The elongated multilayered vanes may include elongate stiffeners that may be associated with, coupled to, and or inserted within pockets formed in, the multilayered vanes. Also disclosed is a method of operation and manufacture.
Abstract:
A stacking panel covering for an architectural opening includes a headrail and a plurality of suspended from the headrail. The panels form an overlapped stack at one end of the headrail when the stacking panel covering is opened, and cover the architectural opening when the stacking panel covering is closed. The panels are piggybacked on those adjacent thereto, so that they stack, one behind the next, when the stacking panel covering is opened, and so that each pulls the next adjacent thereto as the stacking panel covering is being closed. The panels themselves may be planar, or convexly curved in a horizontal direction and substantially straight in a vertical direction.
Abstract:
An architectural covering and a method of manufacturing the covering is provided. The panel may include multiple strips of material extending lengthwise across a width dimension of the panel. The strips of material may be overlapped and coupled to one another to define cells between adjacent strips of material. The panel may be retracted and extended across an architectural opening, and the strips of material may include a resilient support member to expand the cells as the panel is extended across the architectural opening. The panel may be manufactured by helically winding a continuous, elongate strip of material about a drum in an overlapped manner.