Abstract:
The invention provides a internet facsimile apparatus of a communication apparatus that selectively attaches or does not attach various transmission information (header information) according to receivers. When a user set a read medium on an image reading unit, a receiver's mail address input through a control panel is checked. When the input receiver's mail address does not have the same domain name as the internet facsimile apparatus and is not the mail address for which non-attachment of the transmission information is preset, the transmission information is attached, via the transmission information attaching unit, to a part of the image information obtained by reading the image information formed on the read medium. Then, the read image information is transmitted to the receiver.
Abstract:
Glass for forming barrier ribs for e.g. a plasma display panel, which consists, as represented by mol % based on the following oxides, essentially of from 24 to 50% of SiO2, from 13 to 23% of B2O3, from 10 to 32% of ZnO, from 3 to 20% of Li2O, from 1 to 9% of Na2O, from 1 to 15% of Al2O3, from 0 to 20% of MgO+CaO+SrO+BaO, and from 0 to 9% of Bi2O3, wherein ((B2O3+ZnO)—Al2O3) is at least 24 mol %; in a case where ZrO2 is contained, its content is at most 2 mol %; and neither PbO nor F is contained.
Abstract translation:用于形成阻挡肋的玻璃。 等离子体显示面板,其由以下氧化物的摩尔%表示,基本上为SiO 2的24至50%,B 2 2的13至23% ZnO,10〜32%的ZnO,3〜20%的Li 2 O,1〜9%的Na 2 O 3, 1〜15%的Al 2 O 3,0〜20%的MgO + CaO + SrO + BaO和0〜9%的Al 2 O 3 其中((B 2 O 3 + 3 + ZnO)-Al 2 O 3, / O 3 3)为至少24摩尔%。 在含有ZrO 2的情况下,其含量为2摩尔%以下。 并且不含有PbO和F。
Abstract:
In order to make the depth of penetration in the weld bead portion uniform and obtain a bead shape having a flat bottom without spiking and meltdown during continuous hot rolling by bonding a plurality of hot-rolled steel materials using a laser beam, the following methods are employed: (A) a method of butt welding wherein center gas is blown against the welding portion symmetrically to the optical axis of the laser beam while side gas is being blown thereagainst from the side, the method comprising conducting welding while the center of laser-induced plasma is shifted in the welding direction from the center of the laser beam by a distance 0.2 to 0.5 times as much as a reference plasma diameter determined from the laser output and the beam diameter, and the type and flow rate of the center gas; or (B) a method comprising scanning the butt line with the laser beam during the laser welding at a speed of 2 to 10 m/min, and simultaneously oscillating the laser beam in the direction vertical to the butt line at a frequency of 40 to 80 Hz at an amplitude of 0.4 to 1.0 mm. Alternatively, (C) in order to prevent formation of blow holes in the weld bead, to make the depth of penetration in the weld bead portion uniform, and to obtain a bead shape having a flat bottom without spiking and excessive penetration, laser welding is conducted while a filler wire of an iron series base material, containing from 0.05 to 3% of one or at least two elements selected from aluminum, silicon, titanium and manganese, is being supplied to the welding portion. Moreover, (D) in order to stably supply a filler wire to the butt portion with high supply accuracy, the filler wire W is passed through a wire supply nozzle having a curved portion, and the filler wire is supplied toward the welding point along the welding line.
Abstract:
This invention has as its object to provide a viewpoint detection apparatus and method, which can assure high-speed processing, high precision, and high tracking performance with a simple arrangement while suppressing adverse influences on the human body, and a stereoscopic image display apparatus using the same. The viewpoint position detection apparatus of this invention has an image sensing unit (1) and a viewpoint detection unit (2). The image sensing unit has a visible image sensing section (11) and infrared image sensing section (12). A pupil position detection processing section (24) detects the pupil position from an infrared image, and a template generation section (23) generates templates for a visible image using the pupil position obtained from the infrared image. A pattern matching discrimination section (22) executes pattern matching of a visible image. The infrared ray irradiation time upon capturing an infrared image can be minimized, and the load on processes can be reduced since pupil position information detected from the infrared image is used upon generating templates. An image display unit (3) as a stereoscopic image display apparatus is connected to the viewpoint position detection apparatus, and viewpoint position information is supplied to the image display unit, thus constructing a stereoscopic image display system having a broad stereovision range for the observer.
Abstract:
Upon observation of multi-viewpoint images, even when the viewpoint moves continuously, the image cannot normally be displayed in correspondence with the continuous movement of the viewpoint, and an image from a viewpoint closest to the current viewpoint is displayed. To prevent this, each two adjacent images of the multi-viewpoint images are interpolated by detecting corresponding pixels and generating an interpolated image in accordance with the correspondences among pixels. The interpolated image is generated in such a manner that an epipolar plane image is generated by juxtaposing corresponding lines of the multi-viewpoint image, straight lines are detected from the epipolar plane image, and the intersecting points between interpolated lines and the detected straight lines are detected as interpolated pixels. In this case, as for a point for which a straight line cannot be detected, a straight line passing the point is estimated, thereby generating an interpolated pixel. When a plurality of straight lines are detected for a pixel of interest, the priority level is assigned to the pixel of interest in correspondence with the number of detected straight lines. When the priority level is smaller than that of another pixel through which the detected straight line passes, the straight line is ignored, and an interpolated pixel is not generated.
Abstract:
In a higher layer, power source wiring is provisionally provided between a logic-decided functional block and the logic-undecided functional block. Then, a resistor network of the power source wiring within the logic-undecided functional block is prepared by assuming that a current source has been connected to a power source terminal of the logic-undecided functional block. A resistor network of a total power source wiring in the higher layer is prepared by using this local resistor network. An optimum width of the power source wiring is determined by analyzing this resistor network. Based on the width, the power source wiring of the higher layer is rewired.
Abstract:
In order to simplify a photographing operation when providing a texture original image, and to remove a useless operation when extracting a necessary region from the texture original image, the necessary region is assigned in an original image, serving as a base for a texture, using characteristic points of a portion onto which the texture is to be mapped, and a quadrangle having a minimum area is extracted from among quadrangles enclosing the assigned region. An image enclosed by the extracted quadrangle is transformed into a rectangular image having a desired size, and the assigned region is transformed into a region in the rectangular image. The obtained rectangular image and data of the characteristic points for assigning the region are output as texture data. In order to automatically correlate the positions of points assigned in a polygon image with the positions of points assigned in the texture original image including a necessary texture image, respective vertices of the polygons of the displayed polygon image and corresponding points in the displayed texture original image are assigned. Thus, the texture image including the corresponding points is obtained, and position information of the corresponding points in the texture image is provided for the respective vertices assigned in the polygon image.
Abstract:
Power amplifier circuit incorporating a negative feedback circuit for a transmitter and phase control method therefor. An I-component test signal and an I-component baseband feedback signal are added for generating an I-component summing signal. A Q-component test signal and a Q-component baseband feedback signal are added for generating a Q-component summing signal. A carrier is orthogonally modulated with the I- and Q-component summing signals. A part of the modulated signal is orthogonally demodulated with the carrier, whereby I-component baseband feedback signal and Q-component baseband feedback signal are outputted. Phase of the carrier is changed in accordance with a phase control signal for holding the phase of the carrier at a time when the detected state of one of the i- and Q-component summing signals as selected meets predetermined condition.
Abstract:
A battery separator and a method for manufacturing the same and a battery using the same. The battery separator is excellent in alkaline retaining property, initial alkaline absorption and durable alkaline absorption while maintaining tensile strength and air permeability, by forming functional groups or bonds of —CHO or —C+H—O−, —CO—, and —COO— or —COO−on the surface of the non-woven fabric. The battery shows great wettability with an alkaline electrolyte when incorporated into an battery, and thus, improves the battery life. The battery separator is provided by mixing and wet laid processing 15-75 weight % of splittable conjugated staple fibers comprising polyolefin polymer (component A) and ethylene vinyl alcohol copolymer (component B) arranged adjacent to each other when viewed in fiber cross section, 20-60 weight % of thermal bonding staple fibers, and 0-50 weight % of synthetic fibers that have greater fineness than that of ultra fine fibers formed by splitting the splittable bi-component fibers and have the same or smaller fineness than that of the thermal bonding fibers; treating the wet laid type non-woven fabric with high-pressure water flow to split the splittable bi-component fibers and to form the ultra fine fibers while entangling the fibers; treating both surfaces of the non-woven fabric with corona surface discharge, and calendering by heated rollers.
Abstract:
In a method wherein semiconductor wafers are accommodated within a treatment furnace that has been heated beforehand to a predetermined temperature, the temperature within the treatment furnace is increased to a predetermined treatment temperature, and the semiconductor wafers are subjected to an oxidation treatment, the temperature-increasing step is performed under a reduced pressure. This makes it possible to suppress the formation of natural oxide films during the temperature-increasing step, and thus makes it possible to form an extremely thin film of a superior quality on the semiconductor wafer.