Abstract:
A high density recording method for performing high density recording by reducing a light spot size in an optical pickup for recording information by scanning an optical disk with the light spot, spatially controlling the phase or the intensity of light being focused within the optical focal length of an objective lens by employing a diffraction optical element so as to form on the optical disk a light spot whose diameter is reduced according to the width of the portion for controlling the phase or intensity of the light. The distribution of the optical intensity is variable depending on the distance between the diffraction optical element and the optical disk, to thereby enable theoretically forming a limitlessly small light spot, and actually, greatly increase the recording capacity. The diffraction optical element can be used as a floating slider in an optical pickup having a swing arm.
Abstract:
A focus error detector for detecting a signal representing a degree of a focus error of an objective lens with respect to an optical disk in an optical pickup, in order to eliminate errors due to an optical axis shift or tilt of the reflected light reflected from the optical disk, includes a diffraction device for diffracting and splitting the reflected light reflected. The focus error detector a critical angle reflector having critical angle reflecting planes for reflecting the two diffracted light rays at two critical angles, two bi-segmented photo-detectors for receiving the two diffracted light rays reflected from the critical angle reflector, respectively, and detecting signals depending on the received light amount, and a circuit for differentiating and summing each signal of the two bi-segmented photo-detectors so as to offset the light amount difference due to the tilt or shift of the reflected light and outputting a desired signal. Therefore, only an original focus error signal is output, irrespective of an optical shift or tilt of the reflected light, so that malfunction of the optical pickup is prevented and clean recording and reproduction is enabled.
Abstract:
An optical pickup for an optical magnetic disc includes a light source, a grating for diffracting the light into a main light beam and auxiliary light beams, a plurality of magnetic dipole tips arranged above the optical magnetic disc so as to interact with the magnetic signal stored in the optical magnetic disc. Also, a plurality of mirror members each attached to the rear of each magnetic dipole tips are for reflecting the light incident on the mirror member, and a photodetector for detecting track errors and the stored information by receiving the light reflected from the mirror members are provided, thereby detecting the error signal and reproducing information by the interaction with the magnetic dipoles of the disc so that the recording density can be increased without increasing the conventional land and groove areas in the disc.