Abstract:
The present invention relates to methods and arrangements in a wireless communication system that enable the allocation of resources to UEs based on measurements of their antenna polarization, in order to suppress the interference between different UEs at a very low overhead cost. This is achieved by a solution where the scheduling unit retrieves information about the polarization of the UE antenna configurations, and based on this information allocates radio resources to the different UEs, with the aim to minimize the interference. The scheduling unit may retrieve the information from the RBSs or from the UEs. The RBS and the UE will determine the polarization and transmit information regarding this polarization to the scheduling unit. The scheduling unit coordinates the allocation of resources with other scheduling units if necessary.
Abstract:
The present invention relates to a method and a transceiver device in a wireless communication system that enable tuning of the polarization generated by a cross-polarized transmitting antenna configuration of an eNB. This is addressed by a solution where the polarization is adjusted (320) based on a quality indicator e.g. received (310) from one or more UEs. The quality indicator indicates the quality of the communication between the eNB and the UEs, and is used to determine if the adjustment of the antenna configuration is improving the quality of the communication or not. The tuning is thus an iteration (330) of the steps of adjusting (320) the polarization and of receiving (310) the quality indicator, and when the quality indicator has reached a pre-determined value, the iteration is stopped.
Abstract:
A technique is provided for use by a Multi-Radio Management Resource (MRRM) component of a multi-radio wireless communication system for controlling the handover of a mobile terminal between different radio access technologies (RAT). In one example, all suitable RATs having coverage areas currently covering the location of a mobile terminal are identified. The performance gain that might be achieved via a handover to one of the other RATs is then determined by the MRRM based on various performance gain factors. Handover costs that will be incurred as a result of the handover are also explicitly calculated. Then, a cost-adjusted gain is determined by the MRRM based on the performance gain and the handover costs. A handover is only triggered by the MRRM if the cost-adjusted gain exceeds a minimum threshold. The speed and trajectory of the mobile terminal may also be considered.
Abstract:
The present invention relates to anode (1) in a wireless communication system, the node (1) comprising at least a first, a second and a third antenna function (2, 2′; 3, 3′; 4, 4′). A first and second downlink signal (Tx1, Tx2), and a first and second uplink signal (Rx1, Rx2) are transferred via said antenna functions (2, 3, 4; 2′, 3′, 4′), which together form a first total antenna function (A1, A1′) and a second total antenna function (A2, A2′). The first and second downlink signals (Tx1, Tx2) are transferred via the first total antenna function (A1, A1′), and the first and second uplink signal (Rx1, Rx2) are transferred via the second total antenna function (A2, A2′). The second downlink signal (Tx2) and the second uplink signal (Rx2) are transferred via a common connection (5, 5′) connected to a filter means (6, 6′) which is arranged for separating these signals (Tx2, Rx2) to connect them to different antenna functions. The present invention also relates to a corresponding method.
Abstract:
The present invention provides a method and a radio base station (4) which actively monitor the error rate for messages transmitted over an uplink control channel between the radio base station (4) and one or more mobile terminals (6). The distribution of messages transmitted on the uplink control channel is then adapted in dependence on the measured error rate.
Abstract:
A broadcast channel, such as a broadcast control channel that carries a short message service, in a GSM/EDGE or similar communication system can be extended with additional timeslots. These additional timeslots can be pointed out in a tree structure, the root of which is in the SMS broadcast channel. The extended broadcast channel can be used for broadcast-like services provided under a multimedia broadcast/multicast service.
Abstract:
The present invention relates to an antenna arrangement for use in a wireless communication system, where the arrangement comprises at least two single-polarized antenna functions. Each antenna function is adapted for radiating an antenna radiation lobe pattern having a horizontal extension in an azimuth plane, and a vertical extension in an elevation plane, perpendicular to the azimuth plane. The antenna functions both have a first polarization in a first direction. In a second direction separated from the first direction, the second antenna function has a second polarization and the first antenna function has a third polarization, the second polarization and the third polarization being orthogonal to each other.
Abstract:
The present invention relates to a method for use in a user equipment (10), and relates to a user equipment (10) for enabling a serving base station (40) to estimate interference contribution in a network when scheduling resources for the use equipment. According to the method, the user equipment determines an amount of resources required to send data and the user equipment sends a report to it serving base station when the required amount of resources is greater than a threshold value. In the report, measurements performed by the user equipment are included. The report will assist the serving base station with its estimation of the degree of interference user equipments generates in the network, and hence the power and resources to assign.
Abstract:
In a mobile communication system having channels with different bandwidths, a channel bandwidth can be dynamically selected for transmitting data over a connection between a radio access network and a mobile station. According to the invention, a channel bandwidth and also a target for a data error rate for the transmission is selected based on a determined transmission need, i.e. a determined characteristics of the data to be transmitted and on a determined load of a communication resource, e.g. channel power and/or total carrier power used in a cell. By making it possible to dynamically select a data error rate, a connection can, by increasing the data error rate and consequently decreasing the channel power, carry on using a certain channel bandwidth even if at a first instance a load threshold level is achieved for the channel power or the total power used in the cell. Thereby, the capacity of the system can be increased, while at the same time the throughput over the connection is increased.
Abstract:
In a method of selecting an access network from among one or more access networks capable of providing service to a mobile communication terminal, measuring (S1), for at least two access networks, an end-to-end quality through the whole communication path between the terminal and a destination node, and selecting (S2) at least one access based on said measured end-to-end quality.