Abstract:
In the present invention, regarding a narrowband used in a subframe for transmitting uplink data, if a switch is made from a first narrowband used in a first subframe to a second narrowband that is different from the first narrowband, with respect to a second subframe continuing to the first subframe, a final one symbol of the first subframe and an initial one symbol of the second subframe are punctured and set as a retuning time to transmit the uplink data in the first narrowband and the second narrowband.
Abstract:
A repeater generates repetition signals by repeating uplink signals over a plurality of subframes; controller sets a timing for transmitting the repetition signals, based on information indicating a transmission candidate subframe for a sounding reference signal used for measuring an uplink reception quality; and a transmitter transmits the repetition signals at the set timing.
Abstract:
The invention relates to transmission and reception of data in a wireless communication system. In particular, the predetermined number of repetitions of the same data portion is transmitted over the wireless interface. The receiving device receives the repetitions, attempts their decoding and checks whether the decoding was successful. If the decoding was successful after the predetermined number of repetitions or less, a positive acknowledgement is generated. In addition, a feedback including a bundle size information is generated and transmitted. The bundle size information includes a number of repetitions, smaller or equal to the predetermined number, after which the decoding was successful. The feedback is transmitted to the data transmitting device which may adapt the predetermined number of repetitions accordingly. The invention enables efficient control of the number of repetitions applied which is particularly advantageous for coverage enhancement purposes.
Abstract:
An object of this disclosure is to improve the channel estimation accuracy without degradation of transmission quality. Control section (101) configures a predefined number of demodulation reference signals (DMRSs) for terminal (200) configured to perform repetition of an uplink signal over multiple subframes, when a coverage enhancement level corresponding to the number of the multiple subframes is smaller than a determined value, and configures, for the terminal, a number of DMRSs obtained by adding a predetermined number of DMRSs to the predefined number, when the terminal applies the repetition and the coverage enhancement level is equal to or larger than the determined value, the uplink signal being formed by time-multiplexing a data symbol with a DMRS in one subframe. Receiving section (110) receives the uplink signal including the configured number of DMRSs and transmitted from the terminal. Channel estimation section (115) performs channel estimation using the DMRS included in the received uplink signal.
Abstract:
A plurality of the same signals to be repetitively transmitted over multiple subframes are multiplied, in each subframe, by one of components of one sequence of a plurality of orthogonal sequences orthogonal to each other thereby generating a transmission signal. The generated transmission signal is transmitted.
Abstract:
At a base station, a control unit selects one combination from multiple combinations of parameters regarding uplink control channel (PUCCH) resources. A transmission unit indicates a terminal of resource settings (Semi-static resource configuration) including the multiple combinations by higher layer signaling, and indicates the terminal of the one combination that has been selected by dynamic signaling (DCI).
Abstract:
Provided are a user equipment, base station and wireless communication methods related to multiplexing of UCI in PUSCH in NR. A user equipment comprises: circuitry operative to process UCI bits to be transmitted according to the comparison of the number M of UCI bits generated based on DL assignment(s) before an UL grant from a base station and the number N of UCI bits generated based on DL assignment(s) after the UL grant with the number P of UCI bits indicated in the UL grant and/or the maximum number Q of bits determined based on at least a configured coding rate, wherein each of M, N, P, Q is an integer equal to or larger than 0; and a transmitter operative to transmit the processed UCI bits in PUSCH at a TTI indicated in the UL grant to the base station.
Abstract:
In a terminal, a control unit decides a sequence used for an uplink control channel, in accordance with uplink control information, and a transmission unit transmits the uplink control information using the sequence. Here, the sequence is calculated using cell identification information that identifies the cell to which the terminal belongs, and subcell-specific information relating to at least one subcell included in the cell.
Abstract:
The present disclosure is directed to downlink retransmission control. A terminal includes a control circuit that performs retransmission control for a plurality of transport blocks in units of code block groups including at least one code block, and a communication circuit that performs communication according to the retransmission control.
Abstract:
When a plurality of the subcarrier spacing values are applied, a reference signal is generated by using a sequence having a sequence length corresponding to a first ratio of a first subcarrier spacing set for transmission data to the maximum settable subcarrier spacing. The sequence of the reference signal is mapped to a frequency resource at mapping intervals in accordance with a second ratio which is the reciprocal of the first ratio, and the transmission data and the reference signal are transmitted.