Abstract:
Captured vocals may be automatically transformed using advanced digital signal processing techniques that provide captivating applications, and even purpose-built devices, in which mere novice user-musicians may generate, audibly render and share musical performances. In some cases, the automated transformations allow spoken vocals to be segmented, arranged, temporally aligned with a target rhythm, meter or accompanying backing tracks and pitch corrected in accord with a score or note sequence. Speech-to-song music applications are one such example. In some cases, spoken vocals may be transformed in accord with musical genres such as rap using automated segmentation and temporal alignment techniques, often without pitch correction. Such applications, which may employ different signal processing and different automated transformations, may nonetheless be understood as speech-to-rap variations on the theme.
Abstract:
Techniques have been developed to facilitate (1) the capture and pitch correction of vocal performances on handheld or other portable computing devices and (2) the mixing of such pitch-corrected vocal performances with backing tracks for audible rendering on targets that include such portable computing devices and as well as desktops, workstations, gaming stations, even telephony targets. Implementations of the described techniques employ signal processing techniques and allocations of system functionality that are suitable given the generally limited capabilities of such handheld or portable computing devices and that facilitate efficient encoding and communication of the pitch-corrected vocal performances (or precursors or derivatives thereof) via wireless and/or wired bandwidth-limited networks for rendering on portable computing devices or other targets.
Abstract:
Techniques have been developed for transmitting and receiving information conveyed through the air from one portable device to another as a generally unperceivable coding within an otherwise recognizable acoustic signal. For example, in some embodiments in accordance with the present invention(s), information is acoustically communicated from a first handheld device toward a second by encoding the information in a signal that, when converted into acoustic energy at an acoustic transducer of the first handheld device, is characterized in that the acoustic energy is discernable to a human ear yet the encoding of the information therein is generally not perceivable by the human. The acoustic energy is transmitted from the acoustic transducer of the first handheld device toward the second handheld device across an air gap that constitutes a substantially entirety of the distance between the devices. Acoustic energy received at the second handheld device may then be processed using signal processing techniques tailored to detection of the particular information encodings employed.
Abstract:
Despite many practical limitations imposed by mobile device platforms and application execution environments, vocal musical performances may be captured and continuously pitch-corrected for mixing and rendering with backing tracks in ways that create compelling user experiences. In some cases, the vocal performances of individual users are captured on mobile devices in the context of a karaoke-style presentation of lyrics in correspondence with audible renderings of a backing track. Such performances can be pitch-corrected in real-time at a portable computing device (such as a mobile phone, personal digital assistant, laptop computer, notebook computer, pad-type computer or netbook) in accord with pitch correction settings. In some cases, pitch correction settings include a score-coded melody and/or harmonies supplied with, or for association with, the lyrics and backing tracks. Harmonies notes or chords may be coded as explicit targets or relative to the score coded melody or even actual pitches sounded by a vocalist, if desired.
Abstract:
Techniques have been developed for transmitting and receiving information conveyed through the air from one portable device to another as a generally unperceivable coding within an otherwise recognizable acoustic signal. For example, in some embodiments in accordance with the present invention(s), information is acoustically communicated from a first handheld device toward a second by encoding the information in a signal that, when converted into acoustic energy at an acoustic transducer of the first handheld device, is characterized in that the acoustic energy is discernable to a human ear yet the encoding of the information therein is generally not perceivable by the human. The acoustic energy is transmitted from the acoustic transducer of the first handheld device toward the second handheld device across an air gap that constitutes a substantially entirety of the distance between the devices. Acoustic energy received at the second handheld device may then be processed using signal processing techniques tailored to detection of the particular information encodings employed.
Abstract:
Coordinated audio and video filter pairs are applied to enhance artistic and emotional content of audiovisual performances. Such filter pairs, when applied in audio and video processing pipelines of an audiovisual application hosted on a portable computing device (such as a mobile phone or media player, a compute pad or tablet, a game controller or a personal digital assistant or book reader) can allow user selection of effects that enhance both audio and video coordinated therewith. Coordinated audio and video are captured, filtered and rendered at the portable computing device using camera and microphone interfaces, using digital signal processing software executable on a processor and using storage, speaker and display devices of, or interoperable with, the device. By providing audiovisual capture and personalization on an intimate handheld device, social interactions and postings of a type made popular by modern social networking platforms can now be extended to audiovisual content.
Abstract:
Embodiments described herein relate generally to systems comprising a display device, a display device-coupled computing platform, a mobile device in communication with the computing platform, and a content server in which methods and techniques of capture and/or processing of audiovisual performances are described and, in particular, description of techniques suitable for use in connection with display device connected computing platforms for rendering vocal performance captured by a handheld computing device.
Abstract:
Captured vocals may be automatically transformed using advanced digital signal processing techniques that provide captivating applications, and even purpose-built devices, in which mere novice user-musicians may generate, audibly render and share musical performances. In some cases, the automated transformations allow spoken vocals to be segmented, arranged, temporally aligned with a target rhythm, meter or accompanying backing tracks and pitch corrected in accord with a score or note sequence. Speech-to-song music applications are one such example. In some cases, spoken vocals may be transformed in accord with musical genres such as rap using automated segmentation and temporal alignment techniques, often without pitch correction. Such applications, which may employ different signal processing and different automated transformations, may nonetheless be understood as speech-to-rap variations on the theme.