Abstract:
A filament for use in an extrusion-based additive manufacturing system includes an elastomeric core and a harder, non-elastomeric shell. The core compositionally comprising an elastomeric core material having a flexural modulus of less than 31,000 psi and a durometer of less than 80 Shore. The shell overlays the core portion and compositionally comprises a non-elastomeric thermoplastic shell material that is substantially miscible with the elastomeric core material, wherein the core material and the shell material have the same monomer chemistry. The non-elastomeric thermoplastic shell material has a flexural modulus that is greater than the flexural modulus of the elastomeric core material by at least a factor of five, wherein the shell provides sufficient strength or stiffness to the filament such that filament can be utilized as a feedstock in the extrusion-based additive manufacturing system.
Abstract:
A print assembly 18 for use in an additive manufacturing system 10 to print three-dimensional parts 12, which includes a coarse positioner 40, a fine positioner 42, and a liquefier assembly 20, where a portion of the liquefier assembly 20 is operably mounted to the fine positioner 42 such that the fine positioner 42 is configured to move the portion of the liquefier assembly 20 relative to the coarse positioner 40.
Abstract:
A nozzle for printing three-dimensional parts with an additive manufacturing system, the nozzle comprising a nozzle body having an inlet end and a tip end offset longitudinally from the inlet end, a tip pipe for extruding a flowable material, an inner ring extending circumferentially around the tip pipe at the outlet end, an outer ring extending circumferentially around the inner ring, at least one annular recessed groove located circumferentially between the inner ring and the outer ring.
Abstract:
A liquefier assembly for use in an additive manufacturing system to print three-dimensional parts. In one aspect, the liquefier assembly includes a liquefier that is transversely compressible, and having an inlet end configured to receive a consumable material in a solid or molten state and an outlet end, a nozzle at the outlet end, and an actuator mechanism configured to transversely compress and expand the liquefier in a controlled manner In another aspect, the liquefier assembly is self heating.
Abstract:
A 3D printer is configured to print a 3D part. The 3D printer includes a print head carried by a head gantry and configured to operably move the print head along planar tool paths. The 3D printer includes at least one head gantry actuator coupled to the head gantry and configured to move the print head in a plane and a print head actuator coupled to the print head and configured to move the print head in a direction substantially orthogonal to the plane. A sensor is fixedly mounted to the print head and configured to output a first signal that is directly or indirectly related to an acceleration of the print head, and a gyroscope is fixedly mounted to the print head and configured to output a second signal related to a rotational position of the print head. The 3D printer includes a controller configured to determine a rotational position error of the print head relative to a predetermined position based on the first signal and the second signal and to output one or more signals to the at least one head gantry actuator and/or the print head actuator to compensate for the rotational position error of the print head.
Abstract:
A consumable assembly for supplying filament to a 3D printer having two or more receptacles having different geometric configurations, the 3D printer builds parts by material extrusion. The consumable assembly includes a container configured to retain a supply of a first filament, and a first filament guide tube having a length, the first filament guide tube having an inlet end attached to the first container and an outlet end, The consumable assembly includes a key having a geometric configuration allowing the key to be plugged into only one receptacle of the two or more receptacles of the 3D printer, the key comprising a conduit having an entrance and an exit, a coupling portion, and an engagement portion, wherein the entrance to the conduit is coupled to the outlet end of the first filament guide tube to thereby form a closed filament path from the first container to the 3D printer.
Abstract:
An additive manufacturing system includes a gantry configured to move in a build plane. A platen is configured to support a part being built in a layer by layer process and wherein the platen is configured to move in a direction substantially normal to the build plane. A head carriage is carried by the gantry wherein the head carriage includes ferromagnetic material. The system includes at least one print head where the print head includes a housing and one or more magnets attached to the housing wherein the at least one print head is configured to be coupled to the head carriage through a magnetic coupling between the one or more magnets and the ferromagnetic material such that the print head is configured to move rotationally relative to the head carriage.
Abstract:
A method for printing a three-dimensional part in an additive manufacturing process, which includes calculating surface plane angles relative to one or more of the coordinate axes as a function of surface area of the surface geometry, calculating a build score for each coordinate axis as a function of the calculated surface plane angles, and selecting an orientation for the digital model in the coordinate system based at least in part on the calculated build scores. The build scores preferably predict which part orientations are likely to provide good surface quality for the printed three-dimensional part.
Abstract:
A support structure removal system comprising a vessel and a second component. The vessel comprises a vessel body, a porous floor configured to retain a three-dimensional part, and an impeller rotatably mounted below the porous floor. The second component comprises a surface configured to operably receive the vessel, and a rotation-inducing assembly located below the surface, where the rotation-inducing assembly is configured to rotate the impeller with magnetic fields when the vessel is received on the surface of the second component to agitate and direct flows of an aqueous fluid through the porous floor.
Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.