Abstract:
A method for driving a plasma display panel. The plasma display panel includes a plurality of Y electrodes, a plurality of X electrodes, and a plurality of address electrodes. The Y electrodes are divided into a plurality of groups according to an order for scanning the Y electrodes and scan voltages are established to be varied for different groups when the scan voltages are sequentially applied to the Y electrodes. A period for gradually reducing a voltage at the Y electrodes and a bias voltage at the X electrodes is further included when the scan voltages are applied to the first Y electrode of each group of Y electrodes.
Abstract:
In a plasma display panel driving method, a final voltage of a falling ramp voltage is reduced to a voltage for firing a discharge at all the discharge cells in a reset period. A difference between a voltage at an address electrode of a discharge cell to be selected and a voltage applied to a scan electrode is established to be greater than a maximum discharge firing voltage in an address period. A voltage greater than a sustain voltage is applied to the scan electrode so as to convert positive wall charges which can be formed on the scan electrode of a discharge cell which is not selected in the address period into negative wall charges.
Abstract:
Apparatus and method for a plasma display panel (PDP) for controlling power on external video data and generating power control data into N subfields to represent grays is provided having a plasma panel including a plurality of address electrodes, scan electrodes and sustain electrodes arranged in pairs with the address electrodes, a controller for performing power control on the video data to generate N subfields, generating subfield data and sustain pulse information corresponding to the respective subfields, and outputting a floating control signal for controlling a floating time according to the sustain pulse information, an address data driver for applying a voltage that corresponds to the subfield data to the address electrode, a sustain electrode driver for applying a voltage to the sustain electrode according to the sustain pulse information output by the controller, and a scan electrode driver for controlling the floating time according to the floating control signal, and applying a voltage to the scan electrode according to the sustain pulse information.
Abstract:
A driving apparatus of a plasma display panel. In a scan electrode driving circuit, a drain of a first transistor is coupled to a scan electrode, and a driver of the first transistor is coupled to the gate and a source of the first transistor. During a reset period, the driver turns on the first transistor and reduces a voltage at a scan electrode and then turns off the first transistor so as to gradually reduce the voltage of the scan electrode by floating the scan electrode. Further, a selecting voltage may be applied to the scan electrode by turning on the first and second transistors during an address period. Thus, the transistor used during the reset period may be used in the address period.
Abstract:
A display device for displaying pictures by sequentially performing an address period and a sustain period. The panel pixels are arranged into groups, and an address period and a sustain period are sequentially performed on the pixels of individual groups. While an address period is being performed on the pixels of a group, the pixels of other groups are idle. While a sustain period is being performed on the pixels of the group subsequent to the address period, a sustain period is selectively performed on the pixels of other groups that have already undergone an address period. Accordingly, a sustain discharge operation is performed within a short time after an address operation is performed on the pixels, so that a stable sustain discharge occurs even though narrow scan pulses and address pulses may be applied during the address operation. Also, the time required to address all pixels is reduced.
Abstract:
A method for driving a plasma display device having a plurality of row electrodes and a plurality of discharge cells corresponding to the row electrodes, in which a field is divided into a plurality of subfields, the method including dividing the plurality of row electrodes into at least a first row group and a second row group, dividing the first row group into a plurality of first subgroups, dividing the second row group into a plurality of second subgroups, address-discharging one of the first subgroups while sustain-discharging a corresponding one of the second subgroups during a predetermined subfield of a first field, address-discharging the first subgroups in a first order during the predetermined subfield of the first field, and address-discharging the first subgroups in a second order during a corresponding subfield of a second field, wherein the second field is consecutive to the first field.
Abstract:
In a method of driving a discharge display panel, each subfield may include a first address period, a first display-sustain period, a second address period, and a second display-sustain period. In the first address period, a predetermined wall voltage may be generated in display cells selected from the display cells of the first display electrode-line pair group. In the first display-sustain period, display-sustain discharge may occur during a time proportional to a gray scale weight of each of the subfields in the selected display cells of the display cells of the first display electrode-line pair group when the first address period has elapsed. In the second address period, a predetermined wall voltage may be generated in display cells selected from the display cells of the second display electrode-line pair group when the first display-sustain period has elapsed. In the second display-sustain period, display-sustain discharge may occur during a time proportional to a gray scale weight of each of the subfields in the selected display cells of the display cells of the first and second display electrode-line pair groups when the second address period has elapsed.
Abstract:
A method for driving a display panel including a first electrode, a second electrode and an address electrode crossed with the first and second electrodes to form a discharge cell. The method comprises, during a sustain period, alternately applying a voltage pulse to the first and second electrodes, and floating the first or the second electrode and maintaining it at a first voltage level while the voltage pulse is applied to the other electrode.
Abstract:
A PDP driving method. When a first sustain pulse is applied to a scan electrode during a sustain period, an address electrode is biased by a positive voltage, or the address electrode is biased. Therefore, when a large amount of wall charges are formed on the address and scan electrodes by address discharging during an address period, no main discharge is generated since a high potential of the address electrode is formed in the sustain period.
Abstract:
Disclosed is a reset waveform of a plasma display panel. A rising or falling voltage is applied rapidly enough to cause an intense discharge in a reset interval. The electrodes are then floated to reduce the voltage applied into a discharge space during the discharge to cause a self-quenching of the discharge, thereby precisely controlling wall charges.