摘要:
Method and apparatus in a communication unit (400) employing a wireless TDD or half duplex FDD transmission arrangement when communicating with a data sending party, for scheduling feedback reports for data blocks in received RX sub-frames, in TX sub-frames available for transmission. An obtaining unit (402) in the communication unit receives allocation parameters (P) for the connection where the number of required feedback reports is greater than the number of allowed feedback reports. A scheduling unit (404) in the communication unit then schedules feedback reports (FR) in available TX sub-frames according to a predetermined spreading rule also known by the data sending party, dictating that the feedback reports are spread out or distributed evenly over the available TX sub-frames. In this way, the number of feedback reports in a TX sub-frame can be reduced.
摘要:
A node B comprises a downlink data scheduler and an uplink data scheduler. Information associated with a downlink data transfer is transferred from the downlink data scheduler to said uplink data scheduler. The uplink data scheduler schedules an uplink data transfer as a result of the transmission of the downlink data transfer.
摘要:
A system, method and node of downlinking transmissions to an unsynchronized UE in a telecommunications network. The method begins by a node in the network requesting synchronization of the UE with the network. A first transmission of data is sent from the node to the UE prior to synchronization of the UE. The UE then synchronizes with the network by the UE performing a Random Access procedure with the node, thereby triggering a time alignment command from the node to the UE to synchronize the UE with the network. A second transmission of data is then sent from the node to the UE after the UE is synchronized. A response feedback message is sent to the node from the UE. The message is a cumulative feedback message of the first transmission of data and the second transmission of data. Thus, data may be transmitted prior to synchronization of the UE.
摘要:
Methods and devices are disclosed for forwarding data packets during handover in a packet-switched wireless communications system, such as a 3GPP Long-Term Evolution/System Architecture Evolution system. In an exemplary method, a source base station node (410, 900) determines (520) that handover of at least one radio bearer for a served user terminal (160) to a target base station node (430, 900) is imminent. The source base station node (410, 900) classifies (530) a plurality of data packets into two or more data flow classifications according to a transmission status for each data packet, a service requirement for each data packet, or both and selectively forwards (540) one or more of the data packets to the target base station node (430, 900) based on the data flow classification for each data packet. In some embodiments, the source base station node (410, 900) classifies (530) the data packets by inspecting (610) an Internet Protocol header for each packet to determine a corresponding service requirement. In some embodiments, the source base station node (410, 900) classifies (530) data packets by evaluating (650) a radio link control status to determine a transmission status for each data packet. In either case the source base station node (410, 900) selectively forwards (540) data packets corresponding to one or more of the classifications. For example, data packets associated with a reliable delivery service requirement may be forwarded while data packets associated with a maximum delay service requirement are not.
摘要:
The present invention relates to a base station and a method in a mobile telecommunication network for allocating and de-allocating uplink base station processing resources to a mobile terminal. The base station are adapted to communicate to a mobile terminal on an uplink channel supporting macro-diversity, and the base station is adapted to be a non-serving base-station without control of the resource allocation to the mobile-terminal. The base station comprises means for predicting a likelihood of successful decoding of a future transmission, and means for allocating or de-allocating processing resources based on said prediction.
摘要:
Select diversity in cellular radio communications involving both the radio access network and the mobile radio ensures that an optimal base station cell under a current condition is selected for communicating with the mobile radio. A candidate set of radio base station cells is defined for a radio connection between the radio network and the mobile radio. Packets are sent via the radio network to each of multiple radio base stations having a cell in the candidate set. The mobile radio detects a current quality of communication for the radio connection, and based on that detected quality, the candidate cell set may change. The mobile radio selects one of the cells in the candidate cell set to send a next or specific data packet based on one or more selection criteria.
摘要:
A data communication having at least one data flow is established over a wireless interface between a radio network and a user equipment node (UE). A medium access control (MAC) layer located in a radio network node receives data units from a higher radio link control (RLC) layer located in another radio network node. Some or all of a header of a RLC data units associated with the one data flow is analyzed at the MAC layer. Based on that analysis, the MAC layer determines a priority of the data unit relative to other data units associated with the one data flow. The MAC layer schedules transmission of higher priority data units associated with the one data flow before lower priority data units associated with the one data flow. The priority determination does not require extra priority flags or signaling.
摘要:
The present invention relates to generation and transmission of status reports utilizing available HARQ information. The invention is well suited for a cellular mobile radio communications system, particularly a Universal Mobile Telecommunications System, UMTS.
摘要:
A radio access network node (24) comprises protocol data unit (PDU) formation logic (36); a PDU buffer (38); a concatenation timer (40); and a buffer readout mechanism (39). The protocol data unit (PDU) formation logic (36) serves, e.g., for segmenting incoming service data units (SDUs) to form protocol data unit (PDUs). The PDU buffer (38) stores one or more PDUs. The buffer readout mechanism (39) controls readout of contents of the PDU buffer (38). For example, when contents of a PDU in the PDU buffer (38) has not reach a predetermined fill level, the buffer readout mechanism (39) uses the concatenation timer for determining a delay for readout of the PDU from the PDU buffer (38). The delay provides opportunity for at least a portion of a yet-arrived SDU to be included in the PDU prior to readout of the PDU from the PDU buffer (38), and thereby reduce padding in an outgoing PDU.
摘要:
The present invention relates to a method and system of transmissions and retransmissions of packet data in a communications system, introducing concatenated ARQ loops between a radio network controller and a user equipment. Particularly, the invention relates to a Universal Mobile Telecommunications System, UMTS, or WCDMA system.