摘要:
The exemplary embodiments of this invention generally relate to message header-type notification that, for example, enables the co-existence of a legacy header type with one or more new header types on a same radio link. In one non-limiting, exemplary embodiment, a method includes: determining a type of medium access control (MAC) header to transmit in a MAC transmission; setting a value of a notification field in a resource allocation message based on the determined type of MAC header; and transmitting the resource allocation message. In another non-limiting, exemplary embodiment, a method includes: receiving a resource allocation message having a notification field; and using a value of the notification field to determine a type of medium access control (MAC) header for a MAC transmission.
摘要:
Various example embodiments are disclosed. According to an example embodiment, a technique may include participating in an automatic repeat request (ARQ)-enabled service flow between first and second wireless stations, wherein each transmitted MAC (media access control) protocol data unit (PDU) is partitioned into one or more ARQ-blocks, with each ARQ-block, except a last ARQ block of a MAC PDU, having a fixed size equal to an ARQ-block-size, negotiating a change to the ARQ-block-size for the service flow via a request and response message exchange. In another embodiment, a technique may include transmitting an ARQ block size change request for a service flow from a first wireless station to a second wireless station, the ARQ block size change request including one or more parameters relating to a new ARQ-block-size for the service flow; receiving, at the first wireless station from the second wireless station, an ARQ block size change response for the service flow in response to the transmitting the ARQ block size change request; and implementing the new ARQ-block size for the service flow based on the received ARQ block size change response.
摘要:
A macro wireless communication system includes a base station and a femto access point for communicating with user equipment (UE), such as handset, whereby the UE receives information regarding the network relationships between the base station and the femto access point. A home profile setting may be stored in the UE. When the UE communicates with a femto access point that is identified in the home profile, the UE adapts a neighbor listing provided by the home femto access point. Alternatively, the base station stores a list of the UE and its corresponding home femto access point, along with the neighbor list of the femto access point. When a UE is connected to the base station and that base station is in neighbor list of the UE's home femto access point, a message is sent to the UE to forward an appropriate neighbor list to simplify handovers.
摘要:
Various example embodiments are disclosed relating to synchronization of frames using bidirectional transmit and receive zones. An example method includes delaying, at a wireless relay station, a start time of a frame. In the example method, the start time of the frame is delayed, such that the relay station receives one or more data symbols from a superordinate wireless station and one or more data symbols from a subordinate wireless station at substantially the same time during the frame.
摘要:
System throughput is improved by decreasing the system overhead by reducing the size of control packets and data packet headers. A connection identifier (CID) is divided into a CID part 1 carried on a MAP IE and a CID part 2 carried on the generic MAC-PDU headers of one or more MAC PDUs. Versions of RCID-IE( ) in MAP messages may used to represent CID part 1. The generic MAX PDU headers (GMH) may vary according to the length of CID part 1, and multiple GMHs in a PHY burst may have different CID parts 2. In addition, the type header field of the GMH may be shortened or removed. Alternatively, a modified GMH may have an extended type sub-header field. In addition, the GMH may use a shorter connection index or a connection index mask instead of a CID.
摘要:
Various example embodiments are disclosed relating to relay networks or multi-hop networks, and also relating to bandwidth allocation for relay networks. According to an example embodiment, a method of allocating bandwidth in a relay network may include receiving at a relay station a first code (e.g., a first CDMA code) from a first station (e.g., mobile station) via a first link, sending a second code (e.g., second CDMA code) from the relay station to a second station (e.g., a base station) via a second link in response to receiving the first code, the second code being one of a plurality of codes assigned to the relay station, and receiving a bandwidth allocation message at the relay station from the second station, the bandwidth allocation message including the second code and indicating an allocation of bandwidth for a transmission over at least one of the first link and/or the second link.
摘要:
A relay for use in a communications network, the relay being arranged receive data from and transmit data to at least one user equipment, wherein the relay includes a processor arranged to process received configuration data from the user equipment and to transmit data to the user equipment in dependence of the processed ranging data.
摘要:
In the preferred embodiments, it is first determined whether or not a TCP connection from a sending device to a receiving device in the wireless communications network is in a slow start phase. If the TCP connection is in a slow start phase, then the data to be sent in the TCP connection that is allocated a priority that is higher than the priority allocated to other data to be sent by the sending device. The sending device may be a mobile terminal, a Serving GPRS Support Node (SGSN), a device in a WiMAX environment or other network device, and the method of the preferred embodiments may be implemented by software installed and executed on the network device.