Abstract:
The invention relates to a method for correcting a distortion in an aerial photograph caused by a flight movement in the forward direction. The aerial photograph is captured by a surface sensor, the sensor lines of which sensor are exposed at different, successive exposure times, so that each individual sensor line senses a strip of terrain of the terrain flow over at the different exposure times. A relative flight altitude above the strips of terrain captured by the respective sensor line is assigned to the individual sensor lines. Furthermore, a compensation factor is separately determined for each of the individual sensor lines, wherein the factor depends on an air speed of the flying object, a focal length of the aerial camera and the relative flight altitude assigned to the respective sensor line, and corrects the distortion in the aerial photograph for the lines based on the respective compensation factor.
Abstract:
An antenna is provided for acquiring RF signals from various satellite ranging systems including GPS, GLONASS, GALILEO and OmniSTAR®. The antenna configuration includes a radiating structure of multi-arm spiral slots terminated with fractal loops. A leaky wave microstrip spiral feed network is used to excite the radiating structure of the antenna. The fixed beam phased array of aperture coupled slots is optimized to receive a right hand polarized signal. The proposed antenna is made out of a single PCB board. The antenna has a very uniform phase and amplitude pattern in the azimuth plane from 1.15 to 1.65 GHz, therefore providing consistent performance at GPS, GLONASS, GALILEO and OmniSTAR® frequencies. The antenna also has a common phase center at the various frequencies from 1175 MHz to 1610 MHz and substantially the same radiation pattern and axial ratio characteristics.
Abstract:
An inertial (“INS”)/GPS receiver includes an INS sub-system which incorporates, into a modified Kalman filter, GPS observables and/or other observables that span previous and current times. The INS filter utilizes the observables to update position information relating to both the current and the previous times, and to propagate the current position, velocity and attitude related information. The GPS observable may be delta phase measurements, and the other observables may be, for example, wheel pick-offs (or counts of wheel revolutions) that are used to calculate along track differences, and so forth. The inclusion of the measurements in the filter together with the current and the previous position related information essentially eliminates the effect of system dynamics from the system model. A position difference can thus be formed that is directly observable by the phase difference or along track difference measured between the previous and current time epochs. Further, the delta phase measurements can be incorporated in the INS filter without having to maintain GPS carrier ambiguity states. The INS sub-system and the GPS sub-system share GPS and INS position and covariance information. The receiver time tags the INS and any other non-GPS measurement data with GPS time, and then uses the INS and GPS filters to produce INS and GPS position information that is synchronized in time. The GPS/INS receiver utilizes GPS position and associated covariance information and the GPS and/or other observables in the updating of the INS filter. The INS filter, in turn, provides updated system error information that is used to propagate inertial current position, velocity and attitude information. Further, the receiver utilizes the inertial position, velocity and covariance information in the GPS filters to speed up GPS satellite signal re-acquisition and associated ambiguity resolution operations
Abstract:
A GPS receiver embodying the invention includes a first channel that preferentially processes line-of-sight signals and a second channel that preferentially processes multipath signals. It then compares the results to determine if the multipath has degraded the results of the processing of the line-of-sight signals.
Abstract:
A receiver for pseudorandom noise (PRN) encoded signals consisting of a sampling circuit, multiple carrier and code synchronizing circuits, and multiple digital autocorrelators. The sampling circuit provides digital samples of a received composite signal to each of the several receiver channel circuits. The synchronizing circuits are preferably non-coherent, in the sense that they track any phase shifts in the received signal and adjust the frequency and phase of a locally generated carrier reference signal accordingly, even in the presence of Doppler or ionospheric distortion. The autocorrelators in each channel form a delay lock loop (DLL) which correlates the digital samples of the composite signal with locally generated PRN code values to produce a plurality of (early, late), or (punctual, early-minus-late) correlation signals. The time delay spacing between the (early, late), and (punctual, early-minus-late) correlation signals are dynamically adjusted, such that in an initial acquisition mode, the delay spacing is relatively wide, on the order of approximately one PRN code chip time; once PRN code lock is achieved, the code delay spacing is narrowed to a fraction of a PRN code chip time.
Abstract:
An integrated GNSS signal having a plurality of signal components with arbitrary power allocation may be processed. In an embodiment, an integrated signal processing unit of a GNSS receiver may generate in parallel complex rotated samples for a sample of the integrated signal. The complex rotated samples (e.g., early and late complex rotated samples) may be accumulated in parallel in a window that spans any arbitrary width that is less than or equal to a number of code chips in a PRN code sequence. In an embodiment, the integrated signal processing unit may sequentially generate complex rotated samples for the sample. The complex rotated samples (e.g., early, punctual, and late complex rotated samples) may be sequentially accumulated in the window. The GNSS receiver may utilize the accumulated complex rotated samples to perform correlation techniques, perform multipath mitigation techniques, and/or track the integrated signal.
Abstract:
An antenna that provides a radiation pattern that is tilted relative to the perpendicular to the plane of the antenna is provided. The antenna may be located on an angled surface, but have its tilted beam reach maximum gain at its zenith. In alternative embodiments, the antenna may be substantially transparent or translucent allowing placement on a surface without blocking viewing through the surface.
Abstract:
A system and method for detecting spoofing of a Global Navigation Satellite System (GNSS) system using a plurality of antennas. Signals received by at least two of the plurality of antennas are authentication by use of one or more of a carrier phase authentication procedure, a signal power authentication procedure, and/or a channel distortion authentication procedure.
Abstract:
Systems and methods are described for classification of interference for GNSS receivers. One or more neural networks are utilized to classify RF signal data received by a GNSS receiver. The classification associates the RF signal data with an RF environment. Appropriate interference mitigation techniques can be implemented by the receiver based on the classification.
Abstract:
Structures and techniques are disclosed that can be used to reduce or remove code multipath error in GNSS receivers by implementing one or more monitoring correlators in a multipath-error estimation and correction (MEC) module. The MEC module detects and provides for correction of correlation peak distortion. In exemplary embodiments, a code tracking loop integrates all-chip-edges of a PRN, and a narrow-correlator is used to update the tracking loop rate while a multipath estimation module implements a blanked correlator to estimate and remove the multipath bias from the code tracking loop measurements.