Abstract:
A solar-powered aircraft uses solar energy to electrolyze on-board water to produce hydrogen. The hydrogen fills various on-board tanks, causing the aircraft to become lighter than air. The hydrogen is also used to operate a fuel cell which provides power for electrical equipment, including a motor for turning a propeller. Water produced as waste by the fuel cell is recycled for use in the production of hydrogen. When hydrogen is removed from the tanks, either because it is consumed by the fuel cell or because it is compressed and pumped out of the tanks, air returns to the tanks, and the aircraft becomes heavier than air. The aircraft can thus be made to climb and descend by making it lighter than air, or heavier than air. The aircraft emits no harmful substances into the environment. The aircraft can remain aloft indefinitely, limited only by an insignificant amount of leakage of hydrogen and water.
Abstract:
Lifting “ferries” having rotatable wings with propeller engines can lift airplanes vertically, during takeoffs, in a quieter and safer manner with reduced fuel consumption and carbon dioxide emissions. Four rotatable wings are used, to provide balanced lifting force, and to prevent downdraft or propwash from blowing directly against the wings of an airplane being lifted. An optional buoyant aircraft such as a zeppelin can also be used to provide lifting force. Such buoyant aircraft should have adjustable internal struts, to convert it into a streamlined shape for moderate-speed flight and descent. Alternately, a zeppelin can be provided directly with four large rotatable propeller engines, to create a single-unit buoyant lifting ferry.
Abstract:
In one aspect, a hybrid airship including an outer shell, a plurality of helium filled gas envelopes, and an all-electric propulsion system can have a high-aspect ratio wing shape. In some embodiments, the hybrid airship may be launched using buoyancy lift alone and aerodynamic lift may be provided by the all-electric propulsion system. In one aspect, a photovoltaic array and a high energy density power storage system may be combined to power the propulsion system making the propulsion system regenerative. The high-aspect ratio wing shape provides low drag, and can allow the hybrid airship to fly at an altitude of at least about 100,000 ft. By continuously recharging the power storage system, the hybrid airship in accordance with some embodiments can stay aloft for months or even years. The hybrid airship may function as a military intelligence, surveillance, and reconnaissance and communications relay platform.
Abstract:
A spacecraft having facilities for carrying astronauts and payloads into the earth satellite orbit and space having a composite fiber body with a Kevlar exterior skin. Said craft having a substantially round shape with a portion covered with solar cells. Said solar cells powering electrical motors and a plurality of rockets using a quantity of hydrogen fuel.
Abstract:
In one aspect, a hybrid airship including an outer shell, a plurality of helium filled gas envelopes, and an all-electric propulsion system can have a high-aspect ratio wing shape. In some embodiments, the hybrid airship may be launched using buoyancy lift alone and aerodynamic lift may be provided by the all-electric propulsion system. In one aspect, a photovoltaic array and a high energy density power storage system may be combined to power the propulsion system making the propulsion system regenerative. The high-aspect ratio wing shape provides low drag, and can allow the hybrid airship to fly at an altitude of at least about 100,000 ft. By continuously recharging the power storage system, the hybrid airship in accordance with some embodiments can stay aloft for months or even years. The hybrid airship may function as a military intelligence, surveillance, and reconnaissance and communications relay platform.
Abstract:
A method wherein a vehicle is capable of movement on or over land, and/or on, over, or under water. Various body, wing, tail, and/or outrigger shapes facilitate movement and develop lift. Buoyancy or semi-buoyancy is developed utilizing various chambers to contain controlled volumes of gaseous or liquid substances. Motion is augmented by propulsion or repulsion mechanisms, including pressurized liquid stream jet (PJET) propulsion. The vehicle is capable of modifying its shape and/or the curvature of various parts, such as wings, tails, and/or outriggers, by manipulating the internal skeleton, the internal compartments supporting the external surfaces, and/or the internal pressure of the shape. Control Agents with mechanized or manual support manage the vehicle's operations controlling various movement particular information, as well as baseline algorithms, such as wind speed, currents, and location.
Abstract:
A method wherein a vehicle is capable of movement on or over land, and/or on, over, or under water. Various body, wing, tail, and/or outrigger shapes facilitate movement and develop lift. Buoyancy or semi-buoyancy is developed utilizing various chambers to contain controlled volumes of gaseous or liquid substances. Motion is augmented by propulsion or repulsion mechanisms, including pressurized liquid stream jet (PJET) propulsion. The vehicle is capable of modifying its shape and/or the curvature of various parts, such as wings, tails, and/or outriggers, by manipulating the internal skeleton, the internal compartments supporting the external surfaces, and/or the internal pressure of the shape. Control Agents with mechanized or manual support manage the vehicle's operations controlling various movement particular information, as well as baseline algorithms, such as wind speed, currents, and location.
Abstract:
An aeronautical apparatus, the combination comprising a primary airfoil having at least one panel which is an upper panel, a lower panel, and multiple gas containing tubes associated with the airfoil and extending lengthwise thereof, the tubes including relatively larger cross-section tubes positioned chordwise of the airfoil, and relatively smaller cross-section positioners located to stabilize the relatively larger cross-section tubes.
Abstract:
An aeronautical apparatus, the combination comprising a primary airfoil having at least one panel which is an upper panel, a lower panel, and multiple gas containing tubes associated with the airfoil and extending lengthwise thereof, the tubes including relatively larger cross-section tubes positioned chordwise of the airfoil, and relatively smaller cross-section positioners located to stabilize the relatively larger cross-section tubes.
Abstract:
An aeronautical apparatus, the combination comprising a primary airfoil having at least one panel which is an upper panel, a lower panel, and multiple gas containing tubes associated with the airfoil and extending lengthwise thereof, the tubes including relatively larger cross-section tubes positioned chordwise of the airfoil, and relatively smaller cross-section positioners located to stabilize the relatively larger cross-section tubes.