Abstract:
A filter arrangement is provided for filtering fluid flow in a turbine inlet system. The filter arrangement includes a support structure extending along an elongated axis within the turbine inlet system. A pulse or static cartridge filter for filtering a fluid flow is mounted on the support structure, with the support structure extending from an end of the cartridge filter. A pre-filter for filtering and/or coalescing the fluid flow is provided and is supported by the cartridge filter. A method of filtering fluid flow in the turbine inlet system is also provided.
Abstract:
An ambient air intake duct of a static gas turbine is provided, having at least one filter, which is arranged in the intake duct, for cleaning the ambient air (A) that can flow through the intake duct. A method for operating a static gas turbine which is equipped with a filter for cleaning the ambient air (A) is also provided. To rapidly provide a higher level of gas turbine power to a generator, it is provided that, by means of a bypass or by means of flaps arranged downstream of the filter, partially to completely unfiltered ambient air (A) can temporarily flow into the compressor inlet.
Abstract:
An air filter arrangement is disclosed. The air filter arrangement includes strips of media comprising fluted sheets secured to facing sheets and forming inlet and outlet flutes secured to one another in a stack. Media pack arrangements including such stacked media with peripheral, perimeter, housing seal arrangements are described. Also described are air cleaners including the filter cartridges. Methods of assembly and use are also provided. Also, systems of use are described.
Abstract:
The present application provides a turbine inlet air filter system for filtering a flow of air about a compressor. The turbine inlet air filter system may include an inlet filter house and an inlet duct extending from the inlet filter house to the compressor. The inlet duct may include an air elbow with an elbow gate thereon.
Abstract:
A gas turbine engine (10) having an axial flow direction (X) therethrough in use. The gas turbine engine (10) comprises one or more rotor stages each comprising at least one rotor blade (120) having a root portion (122). The gas turbine engine (10) comprises a shroud (122) located upstream of one or more of the rotor stages relative to the axial flow direction (X). The shroud (122) defines a through passageway (128) extending between an inlet (130) and an outlet (132) which comprises a diffuser region (138). The diffuser region (138) is configured to reduce the axial velocity of air exiting the outlet (132) relative to air entering the diffuser portion (138) in use, wherein the outlet (132) is located such that air exiting the outlet (132) is directed substantially to the root portion (122) only of the rotor blades (120).
Abstract:
A containment assembly for a turbo fan engine, has a casing arranged in use around a rotatable fan, to form a duct for the fan and a liner element disposed on an interior surface between the casing and blades of a rotatable fan. The liner element includes a body portion mounted in a recess in the casing and a wall portion arranged to form part of an inner wall of the duct. The wall portion and the body portion being attached and defining a containment cavity therebetween for containment of a detached fan blade fragment in use, wherein the wall portion has a moveable portion movable between a first configuration in which it lies substantially flush with the inner wall of the duct, and a second configuration in which it provides an opening through which a fan blade fragment can enter the containment cavity.
Abstract:
A method for assembling a turbine engine including a compressor is disclosed. The method includes coupling an inlet including an inertial particle separator (IPS) and a first surface that is defined using a segment angle, to a gas turbine engine, and coupling the first surface substantially flush against a fuselage of an aircraft to reduce drag.
Abstract:
A system for conditioning air flow to a gas turbine includes a filter housing and a conditioning media inside the filter housing to adjust the temperature of the air flowing through the filter housing. At least one of a depth or a density of the conditioning media varies across the filter housing. A method for conditioning air flow to a gas turbine includes flowing air through a filter housing connected to the gas turbine and flowing the air across a conditioning media in the filter housing. The method further includes conditioning the air flow to reduce the temperature difference of the air exiting the filter housing across a dimension of the filter housing.
Abstract:
A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be rotated about an axis by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool such that rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades has a span between a root at the hub and a tip, and a chord between a leading edge and a trailing edge. The chord forms a stagger angle α with the axis, and the stagger angle α is less than 15° at a position along the propulsor blade that is within an inboard 20% of the span.
Abstract:
An air filter arrangement is disclosed. The air filter arrangement includes strips of media comprising fluted sheets secured to facing sheets and forming inlet and outlet flutes secured to one another in a stack. Media pack arrangements including such stacked media with peripheral, perimeter, housing seal arrangements are described. Also described are air cleaners including the filter cartridges. Methods of assembly and use are also provided. Also, systems of use are described.