摘要:
A method for operating a magnetic resonance imaging scanner, comprising: providing 3D data from a patient; providing target parameters, wherein the target parameters include an excitation of nuclear spins to be achieved; ascertaining a spectrally selective excitation pulse for emission by a transmitter based on the 3D data from the patient, wherein the spectrally selective excitation pulse is configured to generate the target parameters; and outputting the spectrally selective excitation pulse via the transmitter.
摘要:
A method for determining the spatial distribution of magnetic resonance signals from at least one of N subvolumes predefines a reception encoding scheme and determines unique spatial encoding for at least one of the subvolumes but not for the entire volume under examination (UV). A transmission encoding scheme is also defined, wherein encoding is effected via the amplitude and/or phase of the transverse magnetization. The temporal amplitude and phase profile of the RF pulses is then calculated and each reception encoding step is carried out I times with variations according to the I transmission encoding steps in the transmission encoding scheme. The method makes it possible to largely restrict the spatially resolving MR signal encoding and image reconstruction to subvolumes of the object under examination without the achievable image quality sensitively depending on imperfections in the MR apparatus.
摘要:
In magnetic resonance imaging using a measurement sequence of the “free precession of transverse magnetization in the steady state”-type i.e., an SSFP measurement sequence, during the SSFP measurement sequence, the implementation of a preparation sequence takes place to reduce a signal contribution of the transverse magnetization in an outer region surrounding a measurement region in the MR imaging. The implementation of the preparation sequence includes the radiation of a multidimensional, spatially selective RF pulse that acts in a spatially selective manner on the transverse magnetization in the outer region. Saturation of the transverse magnetization and/or dephasing of the transverse magnetization in the outer region can be achieved by the multidimensional, spatially selective RF pulse.
摘要:
In order to generate an RF excitation pulse together with a gradient curve to excite nuclear spins an arbitrarily shaped volume with a magnetic resonance system, a volume segment is prepared in which the volume is situated, such that only spins within the volume yield an MR signal portion in the subsequent detection of an MR signal. An MR signal is detected from the volume segment along a trajectory of k-space. At least one gradient for scanning k-space along the trajectory is switched during the detection. The RF excitation pulse is generated corresponding to the MR signal detected in a temporally inverted manner, and the gradient curve is generated corresponding to the temporally inverted curve of the at least one gradient to scan k-space.
摘要:
In imaging using 2-dimensional selective excitation pulses, regardless of applications thereof, a technique for obtaining a high quality image is provided.In the technique, a 2-dimensional selective excitation sequence is carried out while changing a coefficient for determining the cylinder diameter of a region excited by the 2-dimensional selective excitation sequence and a time difference for determining an offset position.The obtained excitation region and a desired region are compared with each other, and the coefficient and time difference with which the obtained excitation region and the desired region match each other are determined to be the optimum ones.The determination processing may be performed as an initial adjustment, may be performed according to need in each imaging, or may be performed on a per-application basis.
摘要:
Methods, systems and apparatus for magnetic resonance imaging that facilitate applying a gradient waveform to generate a k-space trajectory in a subject, applying radio frequency (RF) pulses having a pseudorandom phase distribution, such that the RF pulses are applied to the subject at a plurality of non-uniform locations near a center of the k-space trajectory and collecting, based on the applied RF pulses and the applied gradient waveform, imaging data from the subject.
摘要:
In method and a control sequence determination device to determine a magnetic resonance system control sequence that includes at least one radio-frequency pulse train to be emitted by a magnetic resonance system, a target magnetization (m) is initially detected, and an energy distribution function in k-space is determined on the basis of the target magnetization. A k-space trajectory is then determined under consideration of the energy distribution function in k-space, for which the radio-frequency pulse train is then determined in an RF pulse optimization method. The method is suitable for operation of a magnetic resonance system, and a magnetic resonance system includes such a control sequence determination device.
摘要:
In order to provide a technique for improving image quality by selectively exciting only a target region with high precision in either of a two-dimensional spatial selective excitation method or a three-dimensional spatial selective excitation method, selecting a k-space trajectory restraining excitation in a non-target region by side lobes is received. At this time, an excitation region of the selected k-space trajectory is presented to an operator, and the operator can adjust the excitation region through the display. After the adjustment of the excitation region by the operator is reflected, a multi-dimensional spatial selective excitation pulse is stabilized.
摘要:
In order to generate an RF excitation pulse together with a gradient curve to excite nuclear spins an arbitrarily shaped volume with a magnetic resonance system, a volume segment is prepared in which the volume is situated, such that only spins within the volume yield an MR signal portion in the subsequent detection of an MR signal. An MR signal is detected from the volume segment along a trajectory of k-space. At least one gradient for scanning k-space along the trajectory is switched during the detection. The RF excitation pulse is generated corresponding to the MR signal detected in a temporally inverted manner, and the gradient curve is generated corresponding to the temporally inverted curve of the at least one gradient to scan k-space.
摘要:
Methods and systems for designing excitation pulses for magnetic resonance imaging are provided. One method includes parameterizing spin-domain rotation parameters to define parameterized variables and defining a constrained optimization problem based on the parameterized variables. The method also includes solving the constrained optimization problem and generating parameters for the RF pulses based on the solved problem, wherein the RF pulses are one of multidimensional RF pulses on non-constant gradient trajectories or one dimensional RF pulses on non-constant gradient trajectories.