Abstract:
A first apparatus receives, at a first transmission rate, packets belonging to a target packet flow on which packet-shaping processing for controlling network traffic is to be performed, and stores the received packets in a first packet buffer. Then, the first apparatus performs first packet-shaping processing on the target packet flow by transmitting, at a second transmission rate, packets that belong to the target packet flow and read out from the first packet buffer. A second apparatus stores packets received from the first apparatus in a second packet buffer. When a shortage of buffer resource for storing packets belonging to the target packet flow occurs in the first packet buffer, the second apparatus performs second packet-shaping processing on the target packet flow by transmitting, at a third transmission rate, packets that belong to the target packet flow and are read out from the second packet buffer.
Abstract:
In one embodiment, a method includes sending a first flow control signal to a first stage of transmit queues when a receive queue is in a congestion state. The method also includes sending a second flow control signal to a second stage of transmit queues different from the first stage of transmit queues when the receive queue is in the congestion state.
Abstract:
The invention concerns a method for performing a scheduling algorithm in a scheduler (120) of a wireless communication system, comprising the steps of obtaining from a communication unit (200) a minimum resource parameter, wherein said minimum resource parameter indicates a minimum of resources allocated to the communication unit in a scheduling frame to meet a resource constraint and scheduling allocation units for radio access to the communication unit in a scheduling frame in accordance with the minimum resource parameter. The invention also concerns a method performed in a communication unit of a wireless communication network for generating a minimum resource parameter used in a scheduling algorithm to schedule allocation units in a scheduling frame for radio access to the communication unit (200) in accordance with the minimum resource parameter, comprising the steps of calculating the minimum resource parameter based on a determination of the power expended for processing of the scheduling frame, and signaling the calculated minimum resource parameter to the scheduler.
Abstract:
An approach to enhance quality of experience (QoE) in a wireless multimedia communication system is disclosed. A signaling mechanism is provided to make application-layer parameters of a multimedia application to be accessible in one or more network interfaces including an air interface, an access network interface, and a core network interface. Also, the application-layer parameters may be included in quality of service (QoS) class definitions to make the application-layer parameters accessible at the one or more network interfaces. The signaling mechanism and inclusion of application-layer parameters into the QoS class definitions is to enable the QoE-aware link adaptation, resource allocation, joint source channel coding based cross-layer optimizations.
Abstract:
The invention proposes a method for controlling a packet transmission between a sender and a receiver sent via a packet transport protocol, the receiver being a mobile network element, comprising the steps of detecting whether a mobility event has occurred, detecting whether a downlink packet loss has occurred, and providing, in case a mobility event and a packet loss has been detected, an indication to the sender that a packet loss due to mobility has occurred.
Abstract:
A mobile station-side acquirer acquires the MTU value notified by a base station-side notifier and stores the acquired MTU value in a mobile station-side memory. A mobile station-side transmitter transmits data to a destination with the data size set to be smaller than or equal to the MTU value stored in the mobile station-side memory. A base station-side acquirer acquires the MTU value of the transmission path and stores the acquired MTU value in a base station-side memory. The base station-side notifier notifies the mobile station of the MTU value stored in the base station-side memory.
Abstract:
A method and apparatus for implementing output queue-based flow control is provided. The method includes: implementing queue scheduling and flow control by using an output port-based cell queue and by counting the number of cells from different angles. In this system, the flow control and queue management are performed separately. The queue management is directly applied to the cell scheduling. The flow control does not directly depend on the cell statistical results in the queue management. Instead, it is implemented on the basis of the cell statistical results that are obtained according to the cell priority, output port and source chip number of the cells. Therefore, the provided method and apparatus may reduce and simplify the number of queues to be scheduled and implement fine and flexible back pressure control.
Abstract:
Methods and apparatus for reducing data transmission. In one embodiment, rather than immediately transmitting first data, a first device postpones opening a data connection; any subsequently arriving data is queued with the first data, and transmitted together. Connection overhead is optimized by delaying connection establishment until it is necessary, and in some cases eliminating idle mode operation altogether. Stochastic embodiments are also disclosed for adjusting transmission behavior to maximize one or more desirable outcomes. For example, one such embodiment queues data for a stochastically determined period of time, prior to opening a data connection. The stochastically determined time interval balances the likelihood of efficiently servicing successively arriving data, and overall performance. Mechanisms for receiving and utilizing device user and/or receiver (e.g., base station) feedback are also disclosed.
Abstract:
Apparatus for performing packet classification of data packets belonging to a packet flow through a packet data network. The apparatus comprises an ingress interface for receiving packets of said packet flow, and an active filter for disturbing one or more of said packets or for otherwise disturbing a characteristic of said flow. An egress interface is provided for sending the packets including a disturbance towards a destination. A monitor is also provided for monitoring said packet flow and/or one or more associated packet flows received by the apparatus to detect subsequent reactions in the flow/s to the disturbance, whilst a flow classifier is provided for attempting to classify the flow into one of a set of defined classes according to a detected reaction.
Abstract:
A network has a plurality of edge nodes (7a, 7b, 7c, 7d) and core nodes (3a, 3b, 3c) for carrying flows of data from an ingress gateway (7a, 7b, 7c, 7d) to an egress gateway (7a, 7b, 7c, 7d) along a path of core nodes. For any given path in the network work from an ingress node to an egress node, the number of flows is controlled. When network congestion occurs, the egress gateway (7a, 7b, 7c, 7d) provides an indication of the level of network congestion. Terminating flows is disruptive and therefore the ingress gateway (7a, 7b, 7c, 7d) can mark other flows with a congestion marker and send them to the egress gateway (7a, 7b, 7c, 7d). These marked flows are routed by the core and egress gateway (7a, 7b, 7c, 7d) but ignored for calculating network congestion. When the network congestion is alleviated, the marked flows can be un-marked and treated as normal flows, hence the network avoids unnecessary flow termination.