Abstract:
An electrolytic cell is provided that increases current efficiency in the fused alkali chloride salt electrolysis process for producing chlorine and sodium or lithium by improved design of the cell's product collector, diaphragm and graphite anode.
Abstract:
An electrochemical apparatus and system for extracting and recovering metals from their compounds using electrochemical cells where the anolyte 10 is connected electrically to the catholyte 11 through an independent set of electrodes 13, 14 immersed in each electrolyte and connected to each other by a conductor 16. The specification details the application of this principle to commercial size cells and systems to extract metals from solutions, from ores in-situ, from ores in heaps and fixed beds, from fine metal concentrates dissolved either at the anode cell or in a separate leaching vessel. Alkaline electrolytes are also given for the extraction and recovery of nickel and copper from their oxide ores. A method for extracting gold from ores or residues is also included.
Abstract:
An electrochemical cell is provided for removal of metals such as copper, lead, silver, tellurium, platinum, palladium or nickel from dilute solutions of the metal. The cell comprises a porous tubular support (18) which is provided with a cathode comprising a porous carbon fiber material (19), a current feeder (15) for the cathode, a tubular anode (12) spaced from said cathode, a current feeder (16) for the anode, the anode and the cathode being enclosed by a non-porous outer casing (11). In use the dilute solution from which the metal is to be removed is introduced into the cell through an inlet (13) and flows through the porous carbon fiber cathode to an outlet (14). The cell is useful for removing harmful metals from wastes so that they are environmentally acceptable for disposal and for recovery of valuable metals.
Abstract:
An electrodeposition coating system widely used in an automatic coating process of a motor vehicle and the like. This system comprises: an article to be coated as being a first electrode, which is disposed in an electrodeposition bath; and at least two second electrodes provided in association with the article; and current is passed between the both sets of electrodes through an aqueous solution of a substance for forming a coating film contained in the bath to thereby electrodeposit the substance onto the article. The second electrodes consist of two groups of electrodes, the electrodes of a first group out of these second electrodes include electrode members constituted by corrosion-resisting members, each of these electrode members is integrally provided with a first membrane position therearound for precluding most of the flow of an ionized neutralizing agent contained in the aqueous solution, which is attracted by the electrode members, and the electrodes of a second group include electrode members which are each integrally provided with a second membrane portion therearound, for osmotically extracting the neutralizing agent.
Abstract:
A method of electrolytically producing lithium includes providing an electrolytic cell having an anode compartment and a cathode compartment. The compartments are separated by a porous electrically nonconductive membrane which will be wetted by the electrolyte and permit migration of lithium ions therethrough. Lithium carbonate is introduced into the anode compartment and produces delivery of lithium ions from the anode compartment to the cathode compartment where such ions are converted into lithium metal. The membrane is preferably a non-glass oxide membrane such as a magnesium oxide membrane. The membrane serves to resist undesired backflow of the lithium from the cathode compartment through the membrane into the anode compartment. Undesired communication between the anode and cathode is further resisted by separating the air spaces thereover. This may be accomplished by applying an inert gas purge and a positive pressure in the cathode compartment.The apparatus preferably includes an electrolytic cell with an anode compartment and a cathode compartment and an electrically nonconductive membrane which is wettable by the electrolyte and will permit migration of the lithium ion therethrough while resisting reverse passage of lithium therethrough.
Abstract:
A process and apparatus for electrochemically separating alkali oxides to simultaneously generate oxygen gas and liquid alkali metals in a high temperature electrolytic cell is provided. The high temperature electrolytic cell comprises a cathode in contact with an alkali ion conducting molten salt electrolyte separated from the anode by an oxygen vacancy conducting solid electrolyte. Alkali metals separated in the alkali metal reducing half cell reaction are useful as reducing agents in the direct thermochemical refining of lunar metal oxide ores to produce metallic species and alkali oxides, and the alkali oxides may then be recycled to the high temperature electrolytic cell.
Abstract:
Disclosed are a process and apparatus for the treatment of such fluids as ter and effluents by ultra-filtration and electrolysis, useful in particular for the continuous recovery and separation of metallic cations from diluted solutions of their salts and to the softening of water. The apparatus comprises a casing, an ultra-filtration membrane separating the casing into two compartments; a cathode and an anode are respectively housed in two inner compartments separated by an ultra-filtration membrane. The cathodic compartment is connected to an inlet and to an outlet for fluid to be treated, while the anodic compartment is connected to an outlet for the permeate.
Abstract:
A novel, electrocatalytic material comprising at least one reduced platinum group metal oxide is subsequently heated in the presence of oxygen at a temperature high enough to stabilize the catalyst in acidic and halogen environments. The catalyst optionally contains other thermally stabilized, reduced platinum group metal oxides, electroconductive extenders of the group consisting of graphite and oxides of transition or valve metals. A novel electrode structure includes the catalyst and a polymeric binder. A novel method of preparing the electrocatalytic material is described as well as a unitary electrolyte electrode structure which has a bonded electrode containing the novel electrocatalytic material, bonded to at least one side of a membrane-electrolyte.
Abstract:
The invention relates to a membrane assembly and processes for the utilization of the membrane assembly, or membrane assemblies having like properties. The membrane assembly comprises intermixed layers of capillary material and high dielectric constant impermeable material, forming capillary channels parallel to the direction of ion transport through the membrane. The membrane is anion permeable, does not have membrane potential and will not foul even over extended operation, allows cross-flow of anions and cations, and is highly efficient. It is possible to remove complex metals from any contaminated acid by electrodialysis, such as removing vanadium and uranium in recoverable form from contaminated phosphoric acid, while producing food grade phosphoric acid in the process. Additionally, simple metals may be removed from mine waste liquids (from leaching), chlorine can be produced from a chloride containing salt, and chromium can be removed from chromium contaminated water by electrolysis. Milling sludge can be treated to form water, caustic, and acid, and mineralized water can be treated to form de-mineralized water, by subjecting the feed liquids to electrodialysis.
Abstract:
A cell for electrowinning metal from a sulfate electrolyte includes insoluble anodes and cathodes, each anode being housed in an anolyte compartment defined by a flaccid sheath of porous membrane and means within each sheath for separating the sheath from the surfaces of the anode contained therein.