摘要:
A molten salt, membrane electrolyzer apparatus may include an anolyte compartment containing a molten salt anolyte comprising primarily chloride salts and a lithium carbonate (Li2CO3) feed material. A first and second electrode assemblies each having respective anodes, cathode housings proximate the first anode within the anolyte compartment and in fluid contact with the molten salt anolyte and having a primary transfer portion comprising a porous membrane and cathodes positioned within the first catholyte compartment so that the primary transfer portion is disposed between respective anode and cathode. A power supply can be configured to apply an electric potential between the first anode and the first cathode that is sufficient to initiate electrolysis of lithium carbonate and is greater than the electric potential required to initiate LiCl electrolysis.
摘要:
A method and electrolysis cell for producing lithium metal at a low temperature. The method includes combining (i) phenyl trihaloalkyl sulfone and (ii) an organic cation bis(trihaloalkylsulfonyl)imide or organic cation bis(trihalosulfonyl)imidic acid in a weight ratio of (i) to (ii) about 10:90 to about 60:40 to provide a non-aqueous electrolyte composition. A lithium compound selected from the group consisting of LiOH, Li2O and Li2CO3 is dissolved in the electrolyte composition to provide a soluble lithium ion species in the electrolyte composition. Power is applied to the electrolyte composition to form lithium metal on a cathode of an electrolysis cell. The lithium metal is separated from the cathode has a purity of at least about 95 wt. %.
摘要:
Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.
摘要:
A process of producing metal that includes adding a quantity of a alkoxide (M(OR)x) or another metal salt to a cathode compartment of an electrolytic cell and electrolyzing the cell. This electrolyzing causes a quantity of alkali metal ions to migrate into the cathode compartment and react with the metal alkoxide, thereby producing metal and an alkali metal alkoxide. In some embodiments, the alkali metal is sodium such that the sodium ions will pass through a sodium ion selective membrane, such as a NaSICON membrane, into the cathode compartment.
摘要:
Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte and may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.
摘要:
A valuable-substance recovery method according to the present invention includes: a solvent peeling step (S3) of dissolving a resin binder included in an electrode material by immersing crushed pieces of a lithium secondary battery into a solvent, so as to peel off the electrode material containing valuable substances from a metal foil constituting the electrode; a filtering step (S4) of filtering a suspension of the solvent, so as to separate and recover the electrode material containing the valuable substances and a carbon material; a heat treatment step (S5) of heating the recovered electrode material containing the valuable substances and the carbon material, under an oxidative atmosphere, so as to burn and remove the carbon material; and a reducing reaction step (S6) of immersing the resultant electrode material containing the valuable substances into a molten salt of lithium chloride containing metal lithium, so as to perform a reducing reaction.
摘要:
The present invention relates to a method and system for electrolytic fabrication of cells. A cell can be formed of a silicon layer (cathode) sandwiched between layers of glass. One or more holes are formed in the silicon layer. An alkali metal enriched glass material is placed in or associated with the one or more holes. Electrolysis is used to make the alkali metal ions in the alkali metal enriched glass material combine with electrons from the silicon cathode to form neutral alkali metal atoms in the one or more holes.
摘要:
A method for producing a metal by an electrolytic process using an yttria-containing porous ceramic body as a diaphragm is provided; the calcium formed by electrolysis cannot pass through the diaphragm, hence the back reaction can be effectively inhibited. Preferably, to be used is a diaphragm comprising a porous ceramic body having a purity of yttrium of 90 mass % or more (more preferably, 99% or more), a porosity of 1% or more and a pore diameter of 20 μm or less, and having a thickness of 0.05-50 mm and a metal halide is used as the electrolytic bath. The method can be utilized for producing metals such as calcium or rare earth elements, in particular. For example, when the method is applied to the production of calcium, metallic calcium can be produced with ease and at low cost without the need for enormous heat energy.
摘要:
Disclosed herein is an improved method for regenerating materials from a desulfurization/demetallation reaction. The desulfurization/demetallation reaction preferably has products including one or more of an alkali sulfide, polysulfide or hydrosulfide, or alkali earth sulfide, polysulfide, or hydrosulfide. The method includes the steps of reacting the desulfurization/demetallation products with a halogen, liberating and removing sulfur from the product, and then electrolyzing the halogenated products to separate the halogen from the alkali metal or alkali earth metal.
摘要:
The present invention provides a new and useful process for the production of a molten metal by electrolysis in an electrolytic cell having an electrolysis compartment, a metal recovery compartment, and a partition separating upper parts of said compartments, said process comprising: electrolysing in said electrolysis compartment an electrolyte containing a fused salt of said metal said electrolyte being of greater density than said metal; continuously withdrawing the product metal mixed with said electrolyte in a stream from said electrolysis compartment to a top part of said metal recovery compartment; allowing said metal to form in said metal recovery compartment a pad floating on said electrolyte; maintaining said pad out of contact with said partition; and recovering said pad.