Abstract:
An electrolytic process and apparatus are disclosed for regenerating separate bed ion exchange resins used to demineralize aqueous solutions, preferably softened water, without the use of additional chemicals. The cation exchanger is regenerated by applying a DC electric voltage between an anode and a cathode across the cation exchanger whereby hydrogen ions produced at the anode displace cations previously absorbed on the cation exchanger during the previous demineralization cycle. The displaced cations move towards the cathode under the influence of the electric voltage and there form a caustic solution with hydroxyl ions produced by the cathode. The cathodically generated caustic solution is then used to chemically regenerate the anion exchanger in a traditional manner. Two embodiments of the invention are disclosed, one of which is an intermittent system of demineralization and regeneration and the other is a continuously operating system.
Abstract:
The invention concerns an ion exchange process and system, particularly for the regeneration step following a softening or desalination of aqueous solutions. The regenerant solution is fed in an upward stream through the ion exchanger in a direction opposite to the charging direction, as a sequence of intermittent pulse intervals consisting of pulse flow followed by a period of no flow. During the pulse flow, there is limited hydrodynamic lifting of the ion exchange resin beds in layers, followed by subsequent sedimentation during the pause period, without mixing of the layers.