摘要:
A system for determining the position of an underground sonde transmitter is disclosed. In some embodiments, the system measures a set of complex electromagnetic field magnitude and phase strengths at one or more positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, models a set of expected complex electromagnetic strengths of a hypothetical sonde at the positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimates parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths. A final estimated parameter set is determined after the residual error has converged to a minimum tolerance to indicate the sonde transmitter position.
摘要:
A method for determining the location of underground cables and pipes is disclosed. In some embodiments, the method includes measuring a set of electromagnetic field magnitudes and phases at a plurality of positions while traversing a target line parallelly using 3D electromagnetic coil sensors, the 3D electromagnetic coil sensors being orthogonally oriented to the target line, modeling a set of expected complex electromagnetic field magnitudes of a single underground conductor at each of the positions to form a set of values corresponding to a set of individual models for the target line, determining which of the set of individuals models is a best model, determining confidence information at each of the positions based on a comparison between the measured set of complex electromagnetic magnitudes and phases and the best model, and determining parameters at each of positions related to the target line from the best model.
摘要:
An electronic marker locator with a digital architecture for providing accurate and consistent estimation of the signal strength is presented. The marker locator includes a Digital Phase-Locked Loop (DPLL) structure. The electronic marker locator transmits known and adjustable frequency bursts corresponding to the markers to be located while synchronously capturing the signals returned from the markers. Because of the convergence properties of the DPLL, very consistent measurements of the reflected marker signal field strength are possible, resulting in both an improvement of maximum detection depth and depth accuracy. Further, the analog front-end hardware can be reduced, offering wider resistance to component tolerances, lower calibration and test times, and flexible frequency selectivity.
摘要:
A method for determining the location of underground cables and pipes is disclosed. In some embodiments, the method includes measuring a set of electromagnetic field magnitudes and phases at a plurality of positions while traversing a target line parallelly using 3D electromagnetic coil sensors, the 3D electromagnetic coil sensors being orthogonally oriented to the target line, modeling a set of expected complex electromagnetic field magnitudes of a single underground conductor at each of the positions to form a set of values corresponding to a set of individual models for the target line, determining which of the set of individuals models is a best model, determining confidence information at each of the positions based on a comparison between the measured set of complex electromagnetic magnitudes and phases and the best model, and determining parameters at each of positions related to the target line from the best model.
摘要:
Line locator systems that fuse traditional sensors used in a combined pipe and cable locator (electromagnetic coils, magnetometers, and ground penetrating radar antennas) with low cost inertial sensors (accelerometers, gyroscopes) in a model-based approach are presented. Such systems can utilize inexpensive MEMS sensors for inertial navigation. A pseudo-inertial frame is defined that uses the centerline of the tracked utility, or an aboveground fixed object as the navigational reference. An inertial sensor correction mechanism that limits the tracking errors over time when the model is implemented in state-space form using, for example, the Extended Kalman Filter (EKF) is disclosed.
摘要:
An electronic marker locator with a digital architecture for providing accurate and consistent estimation of the signal strength is presented. The marker locator includes a Digital Phase-Locked Loop (DPLL) structure. The electronic marker locator transmits known and adjustable frequency bursts corresponding to the markers to be located while synchronously capturing the signals returned from the markers.
摘要:
A method for determining the location of an underground sonde transmitter is disclosed. In some embodiments, the method includes measuring a set of complex electromagnetic field magnitude and phase strengths at one or more of positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, modeling a set of expected complex electromagnetic strengths of a hypothetical sonde at the one or more of positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimating parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths, wherein a final estimated parameter set is determined after the residual error has converged to a minimum tolerance.
摘要:
An electronic marker locator with a digital architecture for providing accurate and consistent estimation of the signal strength is presented. The marker locator includes a Digital Phase-Locked Loop (DPLL) structure. The electronic marker locator transmits known and adjustable frequency bursts corresponding to the markers to be located while synchronously capturing the signals returned from the markers. Because of the convergence properties of the DPLL, very consistent measurements of the reflected marker signal field strength are possible, resulting in both an improvement of maximum detection depth and depth accuracy. Further, the analog front-end hardware can be reduced, offering wider resistance to component tolerances, lower calibration and test times, and flexible frequency selectivity.
摘要:
A method for determining the location of an underground sonde transmitter is disclosed. In some embodiments, the method includes measuring a set of complex electromagnetic field magnitude and phase strengths at one or more of positions while traversing a target sonde path at any angle using one or more electromagnetic coil sensors, modeling a set of expected complex electromagnetic strengths of a hypothetical sonde at the one or more of positions for one or more of the electromagnetic coil sensors, the set of expected electromagnetic field values corresponding to a model for the target sonde, and estimating parameters related to the target sonde based on the residual error between the measured set of complex electromagnetic field values and the modeled set of expected complex electromagnetic field strengths, wherein a final estimated parameter set is determined after the residual error has converged to a minimum tolerance.
摘要:
A line locator includes a signal detector to detect signals from an underground line; an error modeler that models a phase error in the signal from neighboring underground lines; and an enhanced electromagnetic field modeler that provides a location of the underground line based on the signal and a result from the error modeler.