摘要:
An abrasive waterjet system in accordance with an embodiment of the present technology includes a cutting head, a catcher downstream from the cutting head, and a conveyance configured to carry slurry including abrasive material and liquid collected from the catcher toward the cutting head. The cutting head includes a jet-forming orifice and a mixing chamber downstream from the jet-forming orifice. The cutting head also includes a slurry inlet through which the mixing chamber receives slurry including abrasive material and liquid collected from the catcher. The abrasive waterjet system can be configured for substantially closed-loop recycling of wet abrasive material. This can be useful, for example, to increase abrasive material utilization efficiency and to decrease abrasive material disposal costs. These and/or other benefits may be realized both in the context of low pressure abrasive waterjet systems and in the context of high pressure abrasive waterjet systems.
摘要:
A waterjet system in accordance with at least some embodiments includes a carriage, a motion assembly configured to move the carriage horizontally relative to a workpiece, and a cutting head carried by the carriage. The waterjet system can also include a kinematic chain through which the cutting head is operably connected to the carriage. The kinematic chain can include first, second, and third joints rotatably adjustable about different first, second, and third axes, respectively. The carriage and the first and second joints can be configured to move the cutting head along a path relative to the workpiece while the cutting head directs a jet toward the workpiece to form a product. The third joint can be configured to shift a kinematic singularity away from the path to reduce or eliminate delay and corresponding reduced cutting accuracy associated with approaching the kinematic singularity.
摘要:
A facility for automated modelling of the cutting process for a particular material to be cut by a beam cutting tool, such as a waterjet cutting system, from empirical data to predict aspects of the waterjet's effect on the workpiece across a range of material thicknesses, across a range of cutting geometries, and across a range of cutting quality levels, all of which may be broader than, and independent of the actual requirements for a target workpiece, is described.
摘要:
High pressure pumps and associated check valves for use with, e.g., waterjet systems, are disclosed herein. In some embodiments, high pressure pumps configured in accordance with the present disclosure include check valve assemblies that eliminate threaded parts for restricting the motion of check valve components which are subjected to very high pressure variations at relatively high frequencies. Additionally, embodiments of the pumps described herein can include unitary structures that integrate the individual parts associated with multiple cylinders (e.g., cylinders, check valve bodies, etc.) into a single part (e.g., a cylinder manifold, check valve manifold, outlet manifold, etc.) that can substantially reduce the number of different parts required to assemble the pump.
摘要:
A waterjet system in accordance with at least some embodiments of the present technology includes a tube configured to carry ultrahigh pressure liquid, and a fitting connected to an end portion of the tube. The fitting includes a body and a clamping block that secures the tube to the body. The body includes a recess, a passage extending inwardly from the recess, a sealing surface extending around the passage, and a sidewall extending around the sealing surface. The sealing surface meets the sidewall at an annular corner within the recess. The clamping block includes first, second, and third through holes spaced apart from one another. The tube extends through the first through hole and is secured to the clamping block via a threaded connection. First and second clamping bolts extend through the first and second through holes, respectively, and into respective threaded openings in the body.
摘要:
A facility for automated modelling of the cutting process for a particular material to be cut by a beam cutting tool, such as a waterjet cutting system, from empirical data to predict aspects of the waterjet's effect on the workpiece across a range of material thicknesses, across a range of cutting geometries, and across a range of cutting quality levels, all of which may be broader than, and independent of the actual requirements for a target workpiece, is described.
摘要:
Waterjet systems including control valves and associated devices, systems, and methods are disclosed. A waterjet system configured in accordance with a particular embodiment includes a fluid source, a jet outlet, and a fluid conveyance extending from the fluid source to the jet outlet. The system further includes a control valve positioned along the fluid conveyance downstream from the fluid source and upstream from the jet outlet. The fluid conveyance has a first portion upstream from the control valve and a second portion downstream from the control valve. The control valve is configured to controllably reduce a pressure of fluid within the second portion of the fluid conveyance relative to a pressure of fluid within the first portion of the fluid conveyance. The first portion of the fluid conveyance is configured to accommodate movement of the jet outlet relative to the fluid source.
摘要:
An abrasive jet cutting system may include a differential pressure measurement apparatus configured to measure a differential pressure between points in an abrasive supply system. The differential pressure may be used to determine one or more conditions of the jet and the abrasive delivery. The measured differential pressure may be used in a feedback control system, feed forward control system, and/or an alarm or safety system.
摘要:
A drive system, such as for a fluid jet cutting system, includes a brushless synchronous motor configured to drive movement through a loosely coupled transmission, a sensor configured to sense movement, and a control system configured to drive the brushless synchronous motor responsive to previously measured drive coupling.