摘要:
The present invention discloses a REPEATED-SCAN driving method, which applies to a field sequential color liquid crystal display, wherein each sequential-color cycle of the multiplex-scan signal has at least two stages of scans to increase the luminous fluxes of all colors of backlights and bring closer the total amounts of fluxes, whereby is achieved higher color saturation and better flux uniformity between the rows. Further, the method of the present invention controls the backlights to form dark stages between the intervals respectively of two different colors of the backlights and controls the dark stage to coincide with a color-mixing interval, which is caused by response delay of liquid crystal, to prevent from color distortion caused by color mixing. Therefore, the present invention can generate the pure colors and the designed derived colors accurately.
摘要:
The present invention discloses a REPEATED-SCAN driving method, which applies to a field sequential color liquid crystal display, wherein each sequential-color cycle of the multiplex-scan signal has at least two stages of scans to increase the luminous fluxes of all colors of backlights and bring closer the total amounts of fluxes, whereby is achieved higher color saturation and better flux uniformity between the rows. Further, the method of the present invention controls the backlights to form dark stages between the intervals respectively of two different colors of the backlights and controls the dark stage to coincide with a color-mixing interval, which is caused by response delay of liquid crystal, to prevent from color distortion caused by color mixing. Therefore, the present invention can generate the pure colors and the designed derived colors accurately.
摘要:
A row (common electrode)-modulation gray-level LCD device and a method thereof, which use a row-modulation device to input at least two sequentially generated original common voltage signals to the common electrode of the same row, whereby the sequentially generated original common voltage signals cooperate with the segment voltage signals to generate voltage differences in the common electrode and turn on or turn off the same monochromatic pixel in a time-division mode. The accumulated effect of the time-division turn-on and turn-off states enables the same monochromatic pixel to present gray-pixel.