Abstract:
An embodiment of a process for manufacturing a system for electrical testing of a through via extending in a vertical direction through a substrate of semiconductor material envisages integrating an electrical testing circuit in the body to enable detection of at least one electrical parameter of the through via through a microelectronic buried structure defining an electrical path between electrical-connection elements towards the outside and a buried end of the through via; the integration step envisages providing a trench and forming a doped buried region at the bottom of the trench, having a doping opposite to that of the substrate so as to form a semiconductor junction, defining the electrical path when it is forward biased; in particular, the semiconductor junction has a junction area smaller than the area of a surface of the conductive region in a horizontal plane transverse to the vertical direction, in such a way as to have a reduced reverse saturation current.
Abstract:
A microelectromechanical gyroscope, includes: a supporting body; a first movable mass and a second movable mass, which are oscillatable according to a first driving axis and tiltable about respective a first and second sensing axes and are symmetrically arranged with respect to a center of symmetry; first sensing electrodes and a second sensing electrodes associated with the first and second movable masses and arranged on the supporting body symmetrically with respect to the first and second sensing axis, the first and second movable masses being capacitively coupled to the respective first sensing electrode and to the respective second sensing electrode, a bridge element elastically coupled to respective inner ends of the first movable mass and of the second movable mass and coupled to the supporting body so as to be tiltable about an axis transverse to the first driving axis.
Abstract:
A microelectromechanical gyroscope, includes: a supporting body; a first movable mass and a second movable mass, which are oscillatable according to a first driving axis and tiltable about respective a first and second sensing axes and are symmetrically arranged with respect to a center of symmetry; first sensing electrodes and a second sensing electrodes associated with the first and second movable masses and arranged on the supporting body symmetrically with respect to the first and second sensing axis, the first and second movable masses being capacitively coupled to the respective first sensing electrode and to the respective second sensing electrode, a bridge element elastically coupled to respective inner ends of the first movable mass and of the second movable mass and coupled to the supporting body so as to be tiltable about an axis transverse to the first driving axis.