摘要:
A method is disclosed herein that include an act of causing a processor to access a deep-structured model retained in a computer-readable medium, wherein the deep-structured model comprises a plurality of layers with weights assigned thereto, transition probabilities between states, and language model scores. The method can further include the act of jointly substantially optimizing the weights, the transition probabilities, and the language model scores of the deep-structured model using the optimization criterion based on a sequence rather than a set of unrelated frames.
摘要:
A system and method for applying a convolutional neural network (CNN) to speech recognition. The CNN may provide input to a hidden Markov model and has at least one pair of a convolution layer and a pooling layer. The CNN operates along the frequency axis. The CNN has units that operate upon one or more local frequency bands of an acoustic signal. The CNN mitigates acoustic variation.
摘要:
A system and method for applying a convolutional neural network (CNN) to speech recognition. The CNN may provide input to a hidden Markov model and has at least one pair of a convolution layer and a pooling layer. The CNN operates along the frequency axis. The CNN has units that operate upon one or more local frequency bands of an acoustic signal. The CNN mitigates acoustic variation.
摘要:
A method includes an act of causing a processor to access a deep-structured model retained in a computer-readable medium, the deep-structured model includes a plurality of layers with respective weights assigned to the plurality of layers, transition probabilities between states, and language model scores. The method further includes the act of jointly substantially optimizing the weights, the transition probabilities, and the language model scores of the deep-structured model using the optimization criterion based on a sequence rather than a set of unrelated frames.
摘要:
A system and method for applying a convolutional neural network (CNN) to speech recognition. The CNN may provide input to a hidden Markov model and has at least one pair of a convolution layer and a pooling layer. The CNN operates along the frequency axis. The CNN has units that operate upon one or more local frequency bands of an acoustic signal. The CNN mitigates acoustic variation.