Abstract:
A system and method to screen for malignant gliomas, other brain tumors, and brain injuries use disturbance coefficient, differential impedances, and artificial neural networks. The system uses prescribed excitation signals with several system configurations to measure the differential impedances, calculate harmonic responses and nonlinearity of brain tissue, and estimate the disturbance coefficient that indicates the likelihood of malignant gliomas, other brain tumors, and brain injuries. The disturbance coefficient is a weighted sum of many parameters such as receiving differential impedances, transmission differential impedances, harmonic responses, frequency dispersion, and nonlinear responses using different system configurations and different excitation signals. The method includes arranging the transmitters, receivers, and transmission lines to maximize the sensitivity of detecting brain tissue condition. The artificial neural network is trained to estimate the disturbance coefficient using clinical data. The method provides a sensitive and cost effective approach for screening malignant gliomas, other brain tumors, and brain injuries.
Abstract:
A system and method to screen for malignant gliomas, other brain tumors, and brain injuries use disturbance coefficient, differential impedances, and artificial neural networks. The system uses prescribed excitation signals with several system configurations to measure the differential impedances, calculate harmonic responses and nonlinearity of brain tissue, and estimate the disturbance coefficient that indicates the likelihood of malignant gliomas, other brain tumors, and brain injuries. The disturbance coefficient is a weighted sum of many parameters such as receiving differential impedances, transmission differential impedances, harmonic responses, frequency dispersion, and nonlinear responses using different system configurations and different excitation signals. The method includes arranging the transmitters, receivers, and transmission lines to maximize the sensitivity of detecting brain tissue condition. The artificial neural network is trained to estimate the disturbance coefficient using clinical data. The method provides a sensitive and cost effective approach for screening malignant gliomas, other brain tumors, and brain injuries.
Abstract:
A system and method for applying a convolutional neural network (CNN) to speech recognition. The CNN may provide input to a hidden Markov model and has at least one pair of a convolution layer and a pooling layer. The CNN operates along the frequency axis. The CNN has units that operate upon one or more local frequency bands of an acoustic signal. The CNN mitigates acoustic variation.
Abstract:
A method for interventional navigation using 3D contrast-enhanced ultrasound (CEUS) imaging includes acquiring a reference 3D CEUS volume and tracking information during a useful lifetime of a contrast enhancement agent administered to the anatomy. Real-time tracked tissue images are acquired during the interventional procedure. In addition, a corresponding CEUS multiplanar reconstruction (MPR) for at least one of the acquired real-time tracked tissue images is generated. At least one of the acquired real-time tracked tissue images is displayed along with the corresponding CEUS MPR. The displayed real-time tracked tissue image includes at least an image of the instrument within the desired portion of the anatomy and the CEUS MPR corresponds to the displayed real-time tracked tissue image. Thus, the contrast enhanced image information and tissue image information are concurrently display for the interventional navigation at least subsequent to the expiration of the contrast enhancement useful lifetime.
Abstract:
The invention discloses a website scanning apparatus for performing a security vulnerability scanning on a target website, which apparatus comprises: a web page obtaining component obtaining current content and/or features of a web page corresponding to a link to be processed; a link processing component including a change judgment device for judging whether the web page corresponding to the link to be processed has been changed based on stored web page content and/or features corresponding to the link to be processed as well as the current web page content and/or features of the link to be processed; and a vulnerability detecting component for performing a security vulnerability detection on a web page corresponding to a link to be processed for which the web page has been changed. The invention also discloses a website scanning method corresponding thereto.
Abstract:
Provided is a high throughput methylation detection method, particularly a combined sequence capture and bisulfite sequencing method. The method accurately and effectively analyzes the methylation status of the target area in several samples simultaneously, lowers the difficulty of probe design, enhances operation and application feasibility, and enables high throughput methylation detection of high accuracy on interested target sequences and areas in a complete genome. The method is targeted and conserves energy and time.
Abstract:
An antenna array of a mobile terminal and an implementing method thereof are disclosed in this document. The antenna array includes: a mobile terminal floorboard, configured to act as a radiation body to radiate antenna energy coupled by multiple pairs of coupling units, and multiple pairs of coupling units corresponding to multiple antennas, each of which are fixed at two ends of the mobile terminal floorboard and are configured to inspire a waveguide mode of the mobile terminal floorboard to radiate the coupled antenna energy through feed points of feed lines of each coupling unit therein, located at the same side of a dielectric material plate; and a matching circuit located at the other side of the dielectric material plate, connected with the feed points located at the opposite side of the dielectric material plate and configured to implement impedance matching of a micro-strip feed line of each coupling unit.
Abstract:
Provided are a method, system, and computer-readable medium for determining whether a copy number variation exists in a sample genome. The method includes sequencing a sample genome to obtain a sequencing result formed by multiple reads; comparing the sequencing result with a reference genome sequence to determine the distribution of the reads on the reference genome sequence; determining, based on the distribution of the reads on the reference genome sequence, multiple breakpoints on the reference genome sequence, wherein the number of the reads on either side of each breakpoint are significantly different; determining, based on the plurality of breakpoints, a detection window on the reference genome; determining, based on the reads falling in the detection window, a parameter; and determining, based on the difference between the first parameter and a preset threshold, whether a copy number variation exists in the sample genome against the detection window.
Abstract:
The present invention relates to the field of genomic mutation detection, and in particular, to the detection of the copy number variation (CNV) in cellular chromosomal DNA fragments. The present invention also relates to the detection of diseases related to the copy number variation in the cellular chromosomal DNA fragments.