摘要:
Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.
摘要:
The present invention discloses new methods for synthesizing ammonia borane (NH3BH3, or AB). Ammonium borohydride (NH4BH4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.
摘要:
Compositions are disclosed for storing and releasing hydrogen and methods for preparing and using same. These hydrogen storage and releasing materials exhibit fast release rates at low release temperatures without unwanted side reactions, thus preserving desired levels of purity and enabling applications in combustion and fuel cell applications.
摘要:
The present invention discloses new methods for synthesizing ammonia borane (NH3BH3, or AB). Ammonium borohydride (NH4BH4) is formed from the reaction of borohydride salts and ammonium salts in liquid ammonia. Ammonium borohydride is decomposed in an ether-based solvent that yields AB at a near quantitative yield. The AB product shows promise as a chemical hydrogen storage material for fuel cell powered applications.
摘要:
New methods and compositions are disclosed that minimize foaming in hydrogen-releasing materials. Foaming can be minimized during release of hydrogen in composites that include structured forms such as wafers and discs. Change tolerances of from 0% to 25% in solid products described show promise for next-generation fuel elements and devices.