Abstract:
A method and apparatus generating one or more clock signals in a receiver employing decision-feedback equalization (DFE). A received signal is sampled by a data clock and a transition clock, generating a data sample signal and a transition sample signal, respectively. A DFE correction is performed by DFE circuitry on the data sample signal to generate DFE detected data bits. The transition sample signal is sliced using a weighted threshold value to generate transition data bits. One or more phase updates of the data clock and the transition clocks are in response to the DFE detected data bits and the transition data bits. The weighted threshold is calculated from at least one of the prior-received DFE detected data bits. In one embodiment, the DFE detection may also be dependent on an effective delay (λ) of the DFE circuit in relation to the received signal baud-period, T.
Abstract:
A communication port and method of adapting a transmit filter in the port to reduce receive errors by a receiver coupled to the transmit filter via a communication channel. The filter has coefficients that are adjusted in response to a first adaptation gain value, decision bits, and receiver error values. During a first time period, the coefficients are adjusted until changes in the coefficients are less than a first threshold amount. Then during a second time period, the coefficients are adjusted using a second adaptation gain value until changes in the coefficients are less than a second threshold amount. The second adaptation gain value is less than the first adaptation gain value and the second threshold amount being less than the first threshold amount. By using two or more adjustment periods with different gain values, the filter is adapted faster than using a single adjustment period with fixed adaptation gain.
Abstract:
A method and apparatus generating one or more clock signals in a receiver employing decision-feedback equalization (DFE). A received signal is sampled by a data clock and a transition clock, generating a data sample signal and a transition sample signal, respectively. A DFE correction is performed DFE circuitry on the data sample signal to generate DFE detected data bits. The transition sample signal is sliced using a weighted threshold value to generate corrected transition data. One or more phase updates of the data clock and the transition clocks are in response to the DFE detected data bits and the corrected transition data. The weighted threshold is calculated from at least one prior-received DFE detected data bit. In one embodiment, the DFE correction may also be dependent on an effective delay (λ) of the DFE circuit in relation to the received signal baud-period, T.
Abstract:
Described embodiments provide a method and system for signal compensation in a SERDES communication system that includes monitoring the quality of a data signal after passing through a transmission channel. The quality of the data signal is monitored with at least one of a BER calculation algorithm and a received eye quality monitoring algorithm. Variations in channel length of the transmission channel are compensated for by i) adjusting a length of transmission line delay of the data signal from the transmission channel, ii) comparing the data signal quality with a threshold for the adjusted data signal; and iii) repeating i) and ii) until the data signal quality meets the threshold.
Abstract:
Described embodiments provide a method and system for signal compensation in a SERDES communication system that includes monitoring the quality of a data signal after passing through a transmission channel. The quality of the data signal is monitored with at least one of a BER calculation algorithm and a received eye quality monitoring algorithm. Variations in channel length of the transmission channel are compensated for by i) adjusting a length of transmission line delay of the data signal from the transmission channel, ii) comparing the data signal quality with a threshold for the adjusted data signal; and iii) repeating i) and ii) until the data signal quality meets the threshold.
Abstract:
Described embodiments provide a method and system for signal compensation in a SERDES communication system that includes monitoring the quality of a data signal after passing through a transmission channel. The quality of the data signal is monitored with at least one of a BER calculation algorithm and a received eye quality monitoring algorithm. Variations in channel length of the transmission channel are compensated for by i) adjusting a length of transmission line delay of the data signal from the transmission channel, ii) comparing the data signal quality with a threshold for the adjusted data signal; and iii) repeating i) and ii) until the data signal quality meets the threshold.
Abstract:
Described embodiments provide a method and system for signal compensation in a SERDES communication system that includes monitoring the quality of a data signal after passing through a transmission channel. The quality of the data signal is monitored with at least one of a BER calculation algorithm and a received eye quality monitoring algorithm. Variations in channel length of the transmission channel are compensated for by i) adjusting a length of transmission line delay of the data signal from the transmission channel, ii) comparing the data signal quality with a threshold for the adjusted data signal; and iii) repeating i) and ii) until the data signal quality meets the threshold.
Abstract:
A method and apparatus are disclosed for compensating for a frequency offset between an ingress local area network and an egress local area network that communicate over a transport network. The bandwidth of an egress port is adjusted by varying an inter-packet gap size between each packet so that the packets can be delivered without overflowing an egress buffer. The size of the inter-packet gap is reduced when the frequency of the ingress local area network is greater than the frequency of the egress local area network. The size of the inter-packet gap is increased when the frequency of the ingress local area network is less than the frequency of the egress local area network. The size of the egress inter-packet gap may be statically or dynamically adjusted to compensate for a frequency offset.
Abstract:
A communication port and method of adapting a transmit filter in the port to reduce receive errors by a receiver coupled to the transmit filter via a communication channel. The filter has coefficients that are adjusted in response to a first adaptation gain value, decision bits, and receiver error values. During a first time period, the coefficients are adjusted until changes in the coefficients are less than a first threshold amount. Then during a second time period, the coefficients are adjusted using a second adaptation gain value until changes in the coefficients are less than a second threshold amount. The second adaptation gain value is less than the first adaptation gain value and the second threshold amount being less than the first threshold amount. By using two or more adjustment periods with different gain values, the filter is adapted faster than using a single adjustment period with fixed adaptation gain.