摘要:
A method and apparatus for automatically identifying character segments for character recognition is provided. The method involves receiving a plurality of words and a ground truth corresponding to each word of the plurality of words. The plurality of words may be received in a cursive script. Each word of the plurality of words is segmented into one or more character segments based on the ground truth corresponding to each word. Thereafter, the segmentation of each word is refined by iteratively re-segmenting each word based on one or more similar character segments.
摘要:
A method and apparatus for automatically identifying character segments for character recognition is provided. The method involves receiving a plurality of words and a ground truth corresponding to each word of the plurality of words. The plurality of words may be received in a cursive script. Each word of the plurality of words is segmented into one or more character segments based on the ground truth corresponding to each word. Thereafter, the segmentation of each word is refined by iteratively re-segmenting each word based on one or more similar character segments.
摘要:
Input handwritten characters are classified as print or cursive based upon numerical feature values calculated from the shape of an input character. The feature values are applied to inputs of an artificial neural network which outputs a probability of the input character being print or cursive. If a character is classified as print, it is analyzed by a print character recognizer. If a character is classified as cursive, it is analyzed using a cursive character recognizer. The cursive character recognizer compares the input character to multiple prototype characters using a Dynamic Time Warping (DTW) algorithm.
摘要:
OCR errors are identified and corrected through learning. An error probability estimator is trained using ground truths to learn error probability estimation. Multiple OCR engines process a text image, and convert it into texts. The error probability estimator compares the outcomes of the multiple OCR engines for mismatches, and determines an error probability for each of the mismatches. If the error probability of a mismatch exceeds an error probability threshold, a suspect is generated and grouped together with similar suspects in a cluster. A question for the cluster is generated and rendered to a human operator for answering. The answer from the human operator is then applied to all suspects in the cluster to correct OCR errors in the resulting text. The answer is also used to further train the error probability estimator.
摘要:
Systems, methods, and computer storage media having computer-executable instructions embodied thereon for rewriting queries and labeling word pairs. Queries are received and alternate words are identified for word pairs (i.e., query words and alternate words). Word pair links are presented to users and indicators are received based on actions taken by the users. Labels are assigned to the word pairs based on the indicators and communicated to a classifier.
摘要:
Computer-readable media, computer systems, and computing methods are provided for classifying search results as either of good quality or of poor quality. Initially, a portion of the search results, such as the highest ranked documents, are selected for evaluation. A level of quality for each of the selected search results is determined using a classification process that includes the following steps: targeting features demonstrated by the selected search results to be evaluated; evaluating the selected features to generate a level-of-quality score for each of the selected search results; comparing the score against a predefined threshold value; and, based on the comparison, assigning each of the selected search results an absolute measurement. The absolute measurement indicates poor quality when the score is less than the threshold value. Upon recognizing that the selected search results are of poor quality, automatically executing a corrective action that reformulates the issued search query.
摘要:
In embodiments consistent with the subject matter of this disclosure, a user may input strokes as digital ink to a processing device. The processing device may partition the input strokes into multiple regions of strokes. A first recognizer and a second recognizer may score grammar objects included in regions and represented by chart entries. The scores may be converted to a converted score, which may have at least a near standard normal distribution. The processing device may present a recognition result based on highest converted scores according to a recurrence formula. The processing device may receive a correction hint with respect to misrecognized strokes and may add a penalty score with respect to chart entries representing grammar objects breaking the correction hint. Incremental recognition may be performed when a pause is detected during inputting of strokes.
摘要:
The claimed subject matter provides a system and/or a method that facilitates analyzing and/or recognizing a handwritten character. An interface component can receive at least one handwritten character. A personalization component can train a classifier based on an allograph related to a handwriting style to provide handwriting recognition for the at least one handwritten character. In addition, the personalization component can employ any suitable combiner to provide optimized recognition.
摘要:
A user may initiate or confirm a process for reporting errors in handwriting recognition errors in a computer system. A user dialog is provided in which a user may select handwriting recognition errors to report and report the selected handwriting recognition errors via a handwriting recognition error report. The report may include selected handwriting recognition errors including ink samples, recognized text, corrected text and status. The handwriting recognition errors may further be categorized based on multiple parameters. The user may also include comments with the report.
摘要:
Computer-readable media, computer systems, and computing methods are provided for classifying search results as either of good quality or of poor quality. Initially, a portion of the search results, such as the highest ranked documents, are selected for evaluation. A level of quality for each of the selected search results is determined using a classification process that includes the following steps: targeting features demonstrated by the selected search results to be evaluated; evaluating the selected features to generate a level-of-quality score for each of the selected search results; comparing the score against a predefined threshold value; and, based on the comparison, assigning each of the selected search results an absolute measurement. The absolute measurement indicates poor quality when the score is less than the threshold value. Upon recognizing that the selected search results are of poor quality, automatically executing a corrective action that reformulates the issued search query.