Abstract:
A semi-liquid metal processing and sensing device comprising a crucible that is at least partially encircled by at least one induction coil. The one or more induction coils can be water cooled. The one or more induction coils can be designed to generate a variable power and/or variable frequency magnetic field which can be modulated to control the cooling of a molten metal charge in the crucible from the liquidus temperature to a selected heat content, resistivity and/or viscosity. The magnetic field can be designed to induce toroidal agitation of the metal charge in the crucible. The semi-liquid condition is sensed and can be actively controlled by the induction power supply via real time or non-real time analysis of electrical feedback signals that are obtained from the induction coil.
Abstract:
A process and apparatus for the continuous production of shaped aluminum alloy-particulate composites. The process comprises metering at a substantially constant ratio a particulate solid molten aluminum alloy containing at least 0.10% by weight of magnesium into a mixing station while continuously vigorously agitating to produce a homogeneous mixture, simultaneously discharging from the mixing station a homogeneous mixture of molten aluminum alloy and particulate solid, transferring the mixture to a forming station and shaping and solidifying the composite.
Abstract:
A semi-liquid metal processing and sensing device comprising a crucible that is at least partially encircled by at least one induction coil. The one or more induction coils can be water cooled. The one or more induction coils can be designed to generate a variable power and/or variable frequency magnetic field which can be modulated to control the cooling of a molten metal charge in the crucible from the liquidus temperature to a selected heat content, resistivity and/or viscosity. The magnetic field can be designed to induce toroidal agitation of the metal charge in the crucible. The semi-liquid condition is sensed and can be actively controlled by the induction power supply via real time or non-real time analysis of electrical feedback signals that are obtained from the induction coil.
Abstract:
Shaped metal parts are produced on a continuous basis from semi-solid metal preforms. Plurality of cans, each containing a metal preform, are sequentially heated in an induction heating zone to bring the preforms to a semi-solid level. The preforms can be transformed without loss of any metal or heat to a press where they are shaped in a semi-solid state into a metal part. The can can then be removed and recycled.
Abstract:
A semi-liquid metal processing and sensing device comprising a crucible that is at least partially encircled by at least one induction coil. The one or more induction coils can be water cooled. The one or more induction coils can be designed to generate a variable power and/or variable frequency magnetic field which can be modulated to control the cooling of a molten metal charge in the crucible from the liquidus temperature to a selected heat content, resistivity and/or viscosity. The magnetic field can be designed to induce toroidal agitation of the metal charge in the crucible. The semi-liquid condition is sensed and can be actively controlled by the induction power supply via real time or non-real time analysis of electrical feedback signals that are obtained from the induction coil.
Abstract:
A process and apparatus for the continuous production of shaped aluminum alloy-particulate composites. The process comprises metering at a substantially constant ratio a particulate solid molten aluminum alloy containing at least 0.10% by weight of magnesium into a mixing station while continuously vigorously agitating to produce a homogeneous mixture, simultaneously discharging from the mixing station a homogeneous mixture of molten aluminum alloy and particulate solid, transferring the mixture to a forming station and shaping and solidifying the composite.
Abstract:
A semi-liquid metal processing and sensing device comprising a crucible that is at least partially encircled by at least one induction coil. The one or more induction coils can be water cooled. The one or more induction coils can be designed to generate a variable power and/or variable frequency magnetic field which can be modulated to control the cooling of a molten metal charge in the crucible from the liquidus temperature to a selected heat content, resistivity and/or viscosity. The magnetic field can be designed to induce toroidal agitation of the metal charge in the crucible. The semi-liquid condition is sensed and can be actively controlled by the induction power supply via real time or non-real time analysis of electrical feedback signals that are obtained from the induction coil.
Abstract:
Shaped metal parts are produced on a continuous basis from semi-solid metal preforms. The preforms are supported on pedestals which are surrounded by a ring of material which acts as a heat sink to absorb heat from the liquid portion of the preforms to substantially solidify the liquid portion and prevent the preforms from losing liquid to runoff.