摘要:
Known mercury-vapor discharge lamps for planar irradiation are provided with a lamp bulb made of quartz glass, which encloses a closed discharge space having a non-linear gas-discharge channel. In order to provide a structurally simple lamp, which also guarantees a highest possible homogeneity of the UV irradiation, even for a small distance to the surface to be treated, the lamp bulb is formed as a quartz-glass chamber defined by straight walls and having bottom, top, and side walls and is divided into sub-chambers by several separating webs made of quartz glass and projecting from the bottom wall to the top wall. These sub-chambers include a front-most sub-chamber and a rear-most sub-chamber and form in series interconnection the non-linear gas-discharge channel. The separating webs extend alternately from one side wall up to close to the opposite side wall, while leaving open a gap connecting adjacent sub-chambers in a fluid-communicating manner. One electrode is allocated to the front-most sub-chamber and the other electrode is allocated to the rear-most sub-chamber.
摘要:
In a known method for operating an amalgam lamp having a nominal power Poptimum, it is provided that a lamp voltage Uoptimum designed for a maximum UVC emission is applied between electrodes or a lamp current Ioptimum designed for a maximum UVC emission flows between electrodes. The discharge space is accessible for an amalgam deposit, which is heatable by a heating element in which a heating current Iheating is conducted through the heating element. Starting from this background, in order to provide an operating mode that ensures a stable operation in the region of the optimum power, it is proposed that a target value of the lamp current Itarget is set that is less than Ioptimum and that the heating current Iheating is turned on or increased when the lamp current falls below a lower limit I1 and is turned off or reduced when it exceeds an upper limit I2 for the lamp current.
摘要:
Known mercury-vapor discharge lamps for planar irradiation are provided with a lamp bulb made of quartz glass, which encloses a closed discharge space having a non-linear gas-discharge channel. In order to provide a structurally simple lamp, which also guarantees a highest possible homogeneity of the UV irradiation, even for a small distance to the surface to be treated, the lamp bulb is formed as a quartz-glass chamber defined by straight walls and having bottom, top, and side walls and is divided into sub-chambers by several separating webs made of quartz glass and projecting from the bottom wall to the top wall. These sub-chambers include a front-most sub-chamber and a rear-most sub-chamber and form in series interconnection the non-linear gas-discharge channel. The separating webs extend alternately from one side wall up to close to the opposite side wall, while leaving open a gap connecting adjacent sub-chambers in a fluid-communicating manner. One electrode is allocated to the front-most sub-chamber and the other electrode is allocated to the rear-most sub-chamber.
摘要:
A method is provided for operating an amalgam lamp, wherein the amalgam lamp has an emitter tube filled with inert gas. The amalgam is heated in the emitter tube by an external energy source. The amalgam lamp has an amalgam deposit.
摘要:
In a known method for operating an amalgam lamp having a nominal power Poptimum, it is provided that a lamp voltage Uoptimum designed for a maximum UVC emission is applied between electrodes or a lamp current Ioptimum designed for a maximum UVC emission flows between electrodes. The discharge space is accessible for an amalgam deposit, which is heatable by a heating element in which a heating current Iheating is conducted through the heating element. Starting from this background, in order to provide an operating mode that ensures a stable operation in the region of the optimum power, it is proposed that a target value of the lamp current Itarget is set that is less than Ioptimum and that the heating current Iheating is turned on or increased when the lamp current falls below a lower limit I1 and is turned off or reduced when it exceeds an upper limit I2 for the lamp current.
摘要:
A dimmable amalgam lamp is provided having a quartz glass tube enclosing a discharge chamber comprising a filling gas, and closed by pinching at both ends thereof, through which at least one current feedthrough is fed through one coil-shaped electrode each in the discharge chamber, wherein at least one of the pinches has a hollow space having an opening to the discharge chamber for receiving a deposit of amalgam that can be heated by the coil-shaped electrode. In order to provide a method for operating the amalgam lamp on this basis, ensuring a high efficiency of UV-C radiation even when dimmed, the invention proposes that the current feedthrough include an outgoing line and a return line for an additional current Iadd, and that the additional current Iadd is adjusted as a function of the level of the actual lamp current Iactual.
摘要:
A lamp unit includes a mercury vacuum lamp and a reflector, wherein a discharge chamber containing a filling gas extends along the longitudinal axis of the lamp unit. In order to provide a lamp unit comprising particularly high power and power density and high efficiency of UVC emission on the basis thereof, the discharge chamber forms a circumferential ring gap (6) or an interrupted ring gap, bounded by a radiating shell (8) and a reflector shell (9) associated with the reflector (5).
摘要:
A fluid treatment plant, particularly a water disinfection plant, having more efficient energy utilization and increased service life in discontinuous operation, is producible as a simple mass-production product, that can be handled easily and is particularly suitable for household use. UV emitters are avoided that are complicated or that cannot be operated without danger, such as DBD lamps with coaxial tubes, as well as complicated ballast devices, and dangerous electrical constructions. Fluid raw materials are converted with UV radiation into qualitatively superior or novel products, in that a fluid to be treated is brought into contact with the emitter, so that the fluid is irradiated with UV radiation and has a direct influence on the temperature of the emitter, in particular it sets the operating temperature of the emitter between 0° C. and 30° C. For this purpose, simple UV emitters are used, in which an excimer filling is excited without electrodes in a UV-transparent discharge vessel, particularly a quartz glass tube.