Abstract:
A new cathode design is provided comprising a cathode active material mixed with a binder and a conductive diluent in at least two differing formulations. Each of the formulations exists as a distinct cathode layer. After each layer is pressed or sheeted individually, a first one of the layers is contacted to a current collector. The other layer is then contacted to the opposite side of the layer contacting the current collector. Therefore, by using electrodes comprised of layers, where each layer is optimized for a desired characteristic (i.e. high capacity, high power, high stability), the resulting battery will display improved function over a wide range of applications. Such an exemplary cathode is comprised of: SVO (100−x %)/SVO (100−y %)/current collector/SVO (100−y %)/SVO (100−x %), wherein x and y are different and represent percentages of non-active materials.
Abstract:
An electrochemical cell comprising an electrode, whether it is the cathode of a primary cell or an anode or a cathode of a secondary cell, comprised of a mixture of a robust, high temperature binder along with a sacrificial decomposable polymer is described. The robust binder remains in the electrode throughout formation and processing, and maintains adhesion and cohesion of the cathode during utilization. The sacrificial decomposable polymer is present during the electrode formation stage. However, it is decomposed via a controlled treatment prior to electrode utilization. Upon subsequent high pressure pressing, the void spaces formerly occupied by the sacrificial polymer provides sites where the electrode active material collapses into a tightly compressed mass with enhanced particle-to-particle contact between the active material particles. For a cathode in a primary cell, for example a Li/SVO cell, the result is believed to be improved rate capability, capacity and stability throughout discharge.