摘要:
Measurement opportunities are provided to a wireless transmit/receive unit (WTRU) operating with a switched beam antenna in a CDMA wireless communication system. The switched beam antenna is a smart antenna generating a plurality of directional beams and an omni-directional beam. The bursty nature of packet data transmission generates periods of inactivity or low traffic during a call. The WTRU switches to antenna beams other than the selected antenna beam for receiving and measuring signals during these periods of inactivity or low traffic. Moreover, if the network has knowledge of the fact the WTRU is operating using a switched beam antenna, the network can use this information when making decisions on channel allocations, thus providing frequent measurement opportunities to the WTRU in order to support the switched beam antenna operation.
摘要:
A access point (AP) during wireless communication with at least one wireless transmit/receive unit (WTRU), transmits a beacon signal periodically among a plurality of sectors, each sector having its own sector identity, the beacon signal being periodically received at least once in a beacon period and the beacon period comprising a plurality of beacon service periods for all sectors. The AP determines a scheduling value to indicate a number of inactive beacon periods for a first sector to at least one WTRU located in the first sector. The scheduling value is transmitted with the sector identity for the first sector, such that a variable beacon period is established for the first sector, enabling the at least one WTRU located in the first sector to enter a sleep mode for an adjustable period of time.
摘要:
Apparatus and methods for wireless communication transmission power control are provided. Determination of gain factors and adjustments for physical channel reconfiguration in the context of transmission power control are addressed. Preferably, implementation is in conjunction with communication systems in which wireless communications are conducted between wireless transmit receive units (WTRUs) using multiple channels that are concurrently transmitted.
摘要:
A temporary (temp) dedicated channel (DCH) is used to support communications. The temp-DCH channel is a channel that is assigned to a user having a set duration. After the duration expires, the channel is automatically released to the user. Embodiments of the invention relate to establishing the temp-DCH channel, determining the data rate and duration of the channel. Other embodiments relate to establishing back-to-back temp-DCH channels and the implementation details of these embodiments. Additionally, one embodiment relates to adding a start/stop function to the medium access controller which can be used in conjunction with temp-DCH as well as other applications.
摘要:
Measurement opportunities are provided to a wireless transmit/receive unit (WTRU) operating with a switched beam antenna in a CDMA wireless communication system. The switched beam antenna is a smart antenna generating a plurality of directional beams and an omni-directional beam. The bursty nature of packet data transmission generates periods of inactivity or low traffic during a call. The WTRU switches to antenna beams other than the selected antenna beam for receiving and measuring signals during these periods of inactivity or low traffic. Moreover, if the network has knowledge of the fact the WTRU is operating using a switched beam antenna, the network can use this information when making decisions on channel allocations, thus providing frequent measurement opportunities to the WTRU in order to support the switched beam antenna operation.
摘要:
The invention includes a system and methods for orthogonal variable spreading factor (OVSF) code assignment, de-allocation and code tree pruning. The invention also includes OVSF code identification and storage schemes. Embodiments are provided for code tree pruning, code assignment and de-allocation. These embodiments apply to both slotted and non-slotted code division multiple access systems.
摘要:
A method for characterizing base station processing and memory capabilities in a wireless communications system enables resource allocation to take these capabilities into account and to make allocations that avoid base station overload. A method for allocating resources in a wireless communication system including a base station and a radio network controller (RNC) begins by receiving an allocation request for a new service at the RNC. A set of resources is selected by the RNC to allocate to the new service, taking into account the capabilities of the base station. The allocation request is executed by the RNC if a set of resources can be found that does not exceed the capabilities of the base station.
摘要:
A method for determining padding compatibility is disclosed. A determination is made of a number of protocol data units (PDUs) for a logical channel mapped to a transport channel such that, for a logical channel allowing segmentation, calculate n wherein n=service data unit size/transport block size (SDU size/TB size), and on a condition that n is an integer, setting the number of PDUs=n.
摘要:
Network Allocation Vector (NAV) and “beam access control” (BAC) techniques are provided to address data collision problems in WLANs wherein APs provide wireless network access in a service area defined by multiple sectors via use of a switchable antenna system or the like. Preferably, every time the AP visits a sector and before the AP moves on to the next sector, the AP can set the NAV equal to the time it will take until its next visit. Alternatively, or in addition, a BAC bit is transmitted by an AP to control access to the AP by WTRUs disposed in a service sector in which the BAC is transmitted.
摘要:
A wireless communication method and apparatus for selecting and reselecting cells used by a wireless transmit/receive unit (WTRU) in a wireless multi-cell communication system. The WTRU includes a switched beam antenna configured to form a plurality of directional beams and an omni-directional beam pattern. The WTRU measures signals from a plurality of cells using the directional beams and the omni-directional beam pattern. The WTRU selects and registers with the cell having the strongest signal. In one embodiment, the WTRU selects a directional beam which has the strongest signal and uses it as an active beam to communicate with the selected cell. In another embodiment, the WTRU selects a cell/beam combination and registers with the selected cell using the selected beam. In yet another embodiment, the WTRU initiates a handoff to a neighboring cell that has a better signal measurement result than the selected cell.